References
- Alibeigloo, A. (2016), "Elasticity solution of functionally graded carbon nanotube-reinforced composite cylindrical panel subjected to thermo mechanical load", Compos. Part B, 87, 214-226. Available from: http://dx.doi.org/10.1016/j.compositesb.2015.09.060
- Di Blasi, C. and Galgano, A. (2013), "Influences of properties and heating characteristics on the thermal decomposition of polymer/carbon nanotube nanocomposites", Fire Safety J., 59, 166-177. https://doi.org/10.1016/j.firesaf.2013.04.006
- Di Blasi, C., Galgano, A. and Branca, C. (2013), "Modeling the thermal degradation of poly (methyl methacrylate)/carbon nanotube nanocomposites", Polym. Degrad. Stabil., 98(1), 266-275. https://doi.org/10.1016/j.polymdegradstab.2012.10.001
- Esfe, M.H., Motahari, K., Sanatizadeh, E., Afrand, M., Rostamian, H. and Ahangar, M.R.H. (2016), "Estimation of thermal conductivity of CNTs-water in low temperature by artificial neural network and correlation", Int. Commun. Heat Mass Transfer, 76, 376-381. Available from: http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.12.012
- Haghighi, M.G., Eghtesad, M., Malekzadeh, P. and Necsulescu, D.S. (2009), "Three-dimensional inverse transient heat transfer analysis of thick functionally graded plates", Energy Convers. Manag., 50(3): 450-457. Available from: http://dx.doi.org/10.1016/j.enconman.2008.11.006
- Han, Z. and Fina, A. (2011), "Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review", Progress Polym. Sci., 36(7), 914-944. https://doi.org/10.1016/j.progpolymsci.2010.11.004
- Hetnarski, R.B. and Eslami, M.R. (2009), Thermal Stresses-Advanced Theory and Applications, Springer, The Netherlands.
- Imtiaz, M., Hayat, T., Alsaedi, A. and Ahmad, B. (2016), "Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects", Int. J. Heat Mass Transfer, 101, 948-957. Available from: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.05.114
- Kshirsagar, J.M. and Shrivastava, R. (2015), "Review of the influence of nanoparticles on thermal conductivity, nucleate pool boiling and critical heat flux", Heat Mass Transfer, 51(3), 381-398. https://doi.org/10.1007/s00231-014-1412-3
- Kundalwal, S.I. and Meguid, S.A. (2015), "Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells", Acta Mechanica, 226(6), 2035-2052. https://doi.org/10.1007/s00707-014-1297-8
- Kundalwal, S.I. and Ray, M.C. (2014), "Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite", Int. J. Thermal Sci., 76, 90-100. https://doi.org/10.1016/j.ijthermalsci.2013.08.015
- Kundalwal, S.I., Kumar, R.S. and Ray, M.C. (2013), "Smart damping of laminated fuzzy fiber reinforced composite shells using 1-3 piezoelectric composites", Smart Mater. Struct., 22(10), p. 105001. https://doi.org/10.1088/0964-1726/22/10/105001
- Kundalwal, S.I., Kumar, R.S. and Ray, M.C. (2014a), "Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes", Int. J. Heat Mass Transfer, 72, 440-451. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.025
- Kundalwal, S.I., Kumar, R.S. and Ray, M.C. (2014b), "Effective thermal conductivities of a novel fuzzy fiber-reinforced composite containing wavy carbon nanotubes", J. Heat Transfer, 137(1), p. 012401. https://doi.org/10.1115/1.4028762
- Kundalwal, S.I., Kumar, R.S. and Ray, M.C. (2016), "Smart damping of laminated fuzzy fiber reinforced composite shells using 1-3 piezoelectric composites", J. Vib. Control, 22(6), 1526-1546. Available from: http://stacks.iop.org/0964-1726/22/i=10/a=105001?key=crossref.7fe9133a96d0b74e04e872cc0f6acbe2 https://doi.org/10.1177/1077546314543726
- Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Computat., 37(155), 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
- Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003
- Liu, T.T. and Wang, X. (2007), "Dynamic elastic modulus of single-walled carbon nanotubes in different thermal environments", Phys. Lett. A, 365(1), 144-148. https://doi.org/10.1016/j.physleta.2006.12.059
- Mehar, K. and Panda, S.K. (2016), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. Available from: http://dx.doi.org/10.1016/j.compstruct.2016.02.038
- Mokashi, V.V., Qian, D. and Liu, Y. (2007), "A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics", Compos. Sci. Technol., 67(3), 530-540. https://doi.org/10.1016/j.compscitech.2006.08.014
- Moradi-Dastjerdi, R. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube", Struct. Eng. Mech., Int. J., 57(3), 441-456. https://doi.org/10.12989/sem.2016.57.3.441
- Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., Int. J., 22(2), 277-299. https://doi.org/10.12989/scs.2016.22.2.277
- Moradi-Dastjerdi, R. and Pourasghar, A. (2016), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube under an impact load", J. Vib. Control, 22(4), 1062-1075. https://doi.org/10.1177/1077546314539368
- Moradi-Dastjerdi, R. and Payganeh, G. (2017), "Thermoelastic Vibration Analysis of Functionally Graded Wavy Carbon Nanotube-Reinforced Cylinders", Polym. Compos. DOI: 10.1002/pc.24278
- Moradi-Dastjerdi, R., Foroutan, M. and Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266. Available from: http://dx.doi.org/10.1016/j.matdes.2012.07.069
- Moradi-Dastjerdi, R., Payganeh, G. and Tajdari, M. (2016), "Thermoelastic analysis of functionally graded cylinders reinforced by wavy CNT using a mesh-free method", Polym. Compos. DOI: 10.1002/pc.24183
- Pourasghar, A., Moradi-Dastjerdi, R., Yas, M.H., Ghorbanpour Arani, A. and Kamarian, S. (2016), "Three-dimensional analysis of carbon nanotube-reinforced cylindrical shells with temperature-dependent properties under thermal environment", Polym. Compos. DOI: 10.1002/pc.24046
- Pradhan, N.R., Duan, H., Liang, J. and Iannacchione, G.S. (2009), "The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes", Nanotechnology, 20(24), p. 245705. https://doi.org/10.1088/0957-4484/20/24/245705
- Shariyat, M., Khaghani, M. and Lavasani, S.M.H. (2010), "Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperaturedependent material properties", Eur. J. Mech. / A Solids, 29(3), 378-391. Available from: http://dx.doi.org/10.1016/j.euromechsol.2009.10.007
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. Available from: http://dx.doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng., 213, 196-205. Available from: http://dx.doi.org/10.1016/j.cma.2011.11.025
- Singh, I.V., Tanaka, M. and Endo, M. (2007), "Meshless method for nonlinear heat conduction analysis of nano-composites", Heat Mass Transfer, 43(10), 1097-1106. https://doi.org/10.1007/s00231-006-0194-7
- Sladek, J., Sladek, V., Krivacek, J. and Zhang, C. (2003a), "Local BIEM for transient heat conduction analysis in 3-D axisymmetric functionally graded solids", Computat. Mech., 32(3), 169-176. https://doi.org/10.1007/s00466-003-0470-z
- Sladek, J., Sladek, V. and Zhang, C. (2003b), "Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method", Computat. Mater. Sci., 28(3), 494-504. https://doi.org/10.1016/j.commatsci.2003.08.006
- Sladek, J., Sladek, V., Hellmich, C. and Eberhardsteiner, J. (2007), "Heat conduction analysis of 3-D axisymmetric and anisotropic FGM bodies by meshless local Petrov-Galerkin method", Computat. Mech., 39(3), 323-333.
- Xing, M., Yu, J. and Wang, R. (2016), "Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids", Int. J. Thermal Sci., 104, 404-411. Available from: http://dx.doi.org/10.1016/j.ijthermalsci.2016.01.024
- Zhu, R., Pan, E. and Roy, A. (2007), "Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites", Mater. Sci. Eng. A, 447(1), 51-57. https://doi.org/10.1016/j.msea.2006.10.054
Cited by
- Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene vol.31, pp.5, 2019, https://doi.org/10.12989/scs.2019.31.5.529
- Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809
- Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2017, https://doi.org/10.12989/anr.2021.11.2.183