DOI QR코드

DOI QR Code

Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions

  • Received : 2016.11.08
  • Accepted : 2017.04.11
  • Published : 2017.06.30

Abstract

In this work, transient heat transfer analysis of functionally graded (FG) carbon nanotube reinforced nanocomposite (CNTRC) cylinders with various essential and natural boundary conditions is investigated by a mesh-free method. The cylinders are subjected to thermal flux, convection environments and constant temperature faces. The material properties of the nanocomposite are estimated by an extended micro mechanical model in volume fraction form. The distribution of carbon nanotube (CNT) has a linear variation along the radial direction of axisymmetric cylinder. In the mesh-free analysis, moving least squares shape functions are used for approximation of temperature field in the weak form of heat transform equation and the transformation method is used for the imposition of essential boundary conditions. Newmark method is applied for solution time depended problem. The effects of CNT distribution pattern and volume fraction, cylinder thickness and boundary conditions are investigated on the transient temperature field of the nanocomposite cylinders.

Keywords

References

  1. Alibeigloo, A. (2016), "Elasticity solution of functionally graded carbon nanotube-reinforced composite cylindrical panel subjected to thermo mechanical load", Compos. Part B, 87, 214-226. Available from: http://dx.doi.org/10.1016/j.compositesb.2015.09.060
  2. Di Blasi, C. and Galgano, A. (2013), "Influences of properties and heating characteristics on the thermal decomposition of polymer/carbon nanotube nanocomposites", Fire Safety J., 59, 166-177. https://doi.org/10.1016/j.firesaf.2013.04.006
  3. Di Blasi, C., Galgano, A. and Branca, C. (2013), "Modeling the thermal degradation of poly (methyl methacrylate)/carbon nanotube nanocomposites", Polym. Degrad. Stabil., 98(1), 266-275. https://doi.org/10.1016/j.polymdegradstab.2012.10.001
  4. Esfe, M.H., Motahari, K., Sanatizadeh, E., Afrand, M., Rostamian, H. and Ahangar, M.R.H. (2016), "Estimation of thermal conductivity of CNTs-water in low temperature by artificial neural network and correlation", Int. Commun. Heat Mass Transfer, 76, 376-381. Available from: http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.12.012
  5. Haghighi, M.G., Eghtesad, M., Malekzadeh, P. and Necsulescu, D.S. (2009), "Three-dimensional inverse transient heat transfer analysis of thick functionally graded plates", Energy Convers. Manag., 50(3): 450-457. Available from: http://dx.doi.org/10.1016/j.enconman.2008.11.006
  6. Han, Z. and Fina, A. (2011), "Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review", Progress Polym. Sci., 36(7), 914-944. https://doi.org/10.1016/j.progpolymsci.2010.11.004
  7. Hetnarski, R.B. and Eslami, M.R. (2009), Thermal Stresses-Advanced Theory and Applications, Springer, The Netherlands.
  8. Imtiaz, M., Hayat, T., Alsaedi, A. and Ahmad, B. (2016), "Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects", Int. J. Heat Mass Transfer, 101, 948-957. Available from: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.05.114
  9. Kshirsagar, J.M. and Shrivastava, R. (2015), "Review of the influence of nanoparticles on thermal conductivity, nucleate pool boiling and critical heat flux", Heat Mass Transfer, 51(3), 381-398. https://doi.org/10.1007/s00231-014-1412-3
  10. Kundalwal, S.I. and Meguid, S.A. (2015), "Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells", Acta Mechanica, 226(6), 2035-2052. https://doi.org/10.1007/s00707-014-1297-8
  11. Kundalwal, S.I. and Ray, M.C. (2014), "Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite", Int. J. Thermal Sci., 76, 90-100. https://doi.org/10.1016/j.ijthermalsci.2013.08.015
  12. Kundalwal, S.I., Kumar, R.S. and Ray, M.C. (2013), "Smart damping of laminated fuzzy fiber reinforced composite shells using 1-3 piezoelectric composites", Smart Mater. Struct., 22(10), p. 105001. https://doi.org/10.1088/0964-1726/22/10/105001
  13. Kundalwal, S.I., Kumar, R.S. and Ray, M.C. (2014a), "Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes", Int. J. Heat Mass Transfer, 72, 440-451. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.025
  14. Kundalwal, S.I., Kumar, R.S. and Ray, M.C. (2014b), "Effective thermal conductivities of a novel fuzzy fiber-reinforced composite containing wavy carbon nanotubes", J. Heat Transfer, 137(1), p. 012401. https://doi.org/10.1115/1.4028762
  15. Kundalwal, S.I., Kumar, R.S. and Ray, M.C. (2016), "Smart damping of laminated fuzzy fiber reinforced composite shells using 1-3 piezoelectric composites", J. Vib. Control, 22(6), 1526-1546. Available from: http://stacks.iop.org/0964-1726/22/i=10/a=105001?key=crossref.7fe9133a96d0b74e04e872cc0f6acbe2 https://doi.org/10.1177/1077546314543726
  16. Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Computat., 37(155), 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  17. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003
  18. Liu, T.T. and Wang, X. (2007), "Dynamic elastic modulus of single-walled carbon nanotubes in different thermal environments", Phys. Lett. A, 365(1), 144-148. https://doi.org/10.1016/j.physleta.2006.12.059
  19. Mehar, K. and Panda, S.K. (2016), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. Available from: http://dx.doi.org/10.1016/j.compstruct.2016.02.038
  20. Mokashi, V.V., Qian, D. and Liu, Y. (2007), "A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics", Compos. Sci. Technol., 67(3), 530-540. https://doi.org/10.1016/j.compscitech.2006.08.014
  21. Moradi-Dastjerdi, R. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube", Struct. Eng. Mech., Int. J., 57(3), 441-456. https://doi.org/10.12989/sem.2016.57.3.441
  22. Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., Int. J., 22(2), 277-299. https://doi.org/10.12989/scs.2016.22.2.277
  23. Moradi-Dastjerdi, R. and Pourasghar, A. (2016), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube under an impact load", J. Vib. Control, 22(4), 1062-1075. https://doi.org/10.1177/1077546314539368
  24. Moradi-Dastjerdi, R. and Payganeh, G. (2017), "Thermoelastic Vibration Analysis of Functionally Graded Wavy Carbon Nanotube-Reinforced Cylinders", Polym. Compos. DOI: 10.1002/pc.24278
  25. Moradi-Dastjerdi, R., Foroutan, M. and Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266. Available from: http://dx.doi.org/10.1016/j.matdes.2012.07.069
  26. Moradi-Dastjerdi, R., Payganeh, G. and Tajdari, M. (2016), "Thermoelastic analysis of functionally graded cylinders reinforced by wavy CNT using a mesh-free method", Polym. Compos. DOI: 10.1002/pc.24183
  27. Pourasghar, A., Moradi-Dastjerdi, R., Yas, M.H., Ghorbanpour Arani, A. and Kamarian, S. (2016), "Three-dimensional analysis of carbon nanotube-reinforced cylindrical shells with temperature-dependent properties under thermal environment", Polym. Compos. DOI: 10.1002/pc.24046
  28. Pradhan, N.R., Duan, H., Liang, J. and Iannacchione, G.S. (2009), "The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes", Nanotechnology, 20(24), p. 245705. https://doi.org/10.1088/0957-4484/20/24/245705
  29. Shariyat, M., Khaghani, M. and Lavasani, S.M.H. (2010), "Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperaturedependent material properties", Eur. J. Mech. / A Solids, 29(3), 378-391. Available from: http://dx.doi.org/10.1016/j.euromechsol.2009.10.007
  30. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. Available from: http://dx.doi.org/10.1016/j.compstruct.2009.04.026
  31. Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng., 213, 196-205. Available from: http://dx.doi.org/10.1016/j.cma.2011.11.025
  32. Singh, I.V., Tanaka, M. and Endo, M. (2007), "Meshless method for nonlinear heat conduction analysis of nano-composites", Heat Mass Transfer, 43(10), 1097-1106. https://doi.org/10.1007/s00231-006-0194-7
  33. Sladek, J., Sladek, V., Krivacek, J. and Zhang, C. (2003a), "Local BIEM for transient heat conduction analysis in 3-D axisymmetric functionally graded solids", Computat. Mech., 32(3), 169-176. https://doi.org/10.1007/s00466-003-0470-z
  34. Sladek, J., Sladek, V. and Zhang, C. (2003b), "Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method", Computat. Mater. Sci., 28(3), 494-504. https://doi.org/10.1016/j.commatsci.2003.08.006
  35. Sladek, J., Sladek, V., Hellmich, C. and Eberhardsteiner, J. (2007), "Heat conduction analysis of 3-D axisymmetric and anisotropic FGM bodies by meshless local Petrov-Galerkin method", Computat. Mech., 39(3), 323-333.
  36. Xing, M., Yu, J. and Wang, R. (2016), "Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids", Int. J. Thermal Sci., 104, 404-411. Available from: http://dx.doi.org/10.1016/j.ijthermalsci.2016.01.024
  37. Zhu, R., Pan, E. and Roy, A. (2007), "Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites", Mater. Sci. Eng. A, 447(1), 51-57. https://doi.org/10.1016/j.msea.2006.10.054

Cited by

  1. Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene vol.31, pp.5, 2019, https://doi.org/10.12989/scs.2019.31.5.529
  2. Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809
  3. Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2017, https://doi.org/10.12989/anr.2021.11.2.183