Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Bai, Y., Yang, L. and Gong, L.F. (2015), "Elasto-plastic bearing capacity of four types of single-layer reticulated shell structures under fire hazards", Int. J. Struct. Stabil. Dyn., 15(3), 1450051. https://doi.org/10.1142/S0219455414500515
- Bulenda, T. and Knippers, J. (2001), "Stability of grid shells", Comput. Struct., 79(12), 1161-1174. https://doi.org/10.1016/S0045-7949(01)00011-6
- Cai, J.G., Gu, L.M., Xu, Y.X., Feng, J. and Zhang, J. (2012), "Nonlinear stability of a single-layer hybrid grid shell", J. Civil Eng. Manage., 18(5), 752-760. https://doi.org/10.3846/13923730.2012.723325
- Cai, J.G., Zhou, Y., Xu, Y.X. and Feng, J. (2013a), "Non-linear stability analysis of a hybrid barrel vault roof", Steel Compos. Struct., Int. J., 14(6), 571-586 https://doi.org/10.12989/scs.2013.14.6.571
- Cai, J.G., Xu, Y.X. and Feng, J. (2013b), "Kinematic analysis of Hoberman's Linkages with the screw theory", Mech. Mach. Theory, 63, 28-34. https://doi.org/10.1016/j.mechmachtheory.2013.01.004
- Cai, J.G., Deng, X.W., Feng, J. and Xu, Y.X. (2014), "Mobility analysis of generalized angulated scissor-like elements with the reciprocal screw theory", Mech. Mach. Theory, 82, 256-265 https://doi.org/10.1016/j.mechmachtheory.2014.07.011
- Cai, J.G., Jiang, C., Xu, Y.X. and Feng, J. (2015), "Static analysis of a radially retractable hybrid grid shell in the closed position", Steel Compos. Struct., Int. J., 18(6), 1391-1401 https://doi.org/10.12989/scs.2015.18.6.1391
- Cai, J.G., Zhou, Y.H., Zhu, Y.F., Feng, J., Xu, Y.X. and Zhang, J. (2016), "Geometry and mechanical behaviour of radially retractable roof structures during the movement process", Int. J. Steel Struct., 16(3), 755-764. https://doi.org/10.1007/s13296-014-0173-7
- Eurocode (2004), European standard. 3: Design of steel structures, Parts 1-6: strength and stability of shell structures, European Committee for Standardisation.
- Fan, F., Cao, Z.G. and Shen, S.Z. (2010), "Elasto-plastic stability of single-layer reticulated shells", Thin-Wall. Struct., 48(10), 827-836. https://doi.org/10.1016/j.tws.2010.04.004
- Forman, S.E. and Hutchinson, J.W. (1970), "Buckling of reticulated shell structures", Int. J. Solids Struct., 6(7), 909-932. https://doi.org/10.1016/0020-7683(70)90004-1
- GB50009-2012 (2012), Load code for the design of building structures; China Architecture & Building Press, Beijing, China.
- Gioncu, V. (1995), "Buckling of reticulated shells state-of-the-art", Int. J. Space Struct., 10(1), 1-46. https://doi.org/10.1177/026635119501000101
- Gosowski, B. (2003), "Spatial stability of braced thin-walled members of steel structures", J. Constr. Steel Res., 59(7), 839-865. https://doi.org/10.1016/S0143-974X(02)00093-7
- JGJ7-2010 (2010), Technical specification for space frame structures; China Architecture Industry Press, Beijing, China. [In Chinese]
- Kato, S., Yamashita, T. and Ueki, T. (2000), "Evaluation of elastoplastic buckling strength of two-way grid shells using continuum analogy", Proceedings of the 6th Asian Pacific Conference on Shell and Spatial Structures, Seoul, Korea, October, pp. 105-114.
- Liu, H.B., Chen, Z.H., Xu, S. and Bu, Y.D. (2015), "Structural behavior of aluminum reticulated shell structures considering semi-rigid and skin effect", Struct. Eng. Mech., Int. J., 54(1), 121-133 https://doi.org/10.12989/sem.2015.54.1.121
- Luo, Y.F. (1991), "Elasto-plastic stability and loading completeprocess research of reticulated shells', Ph.D. Thesis; Tongji University, China. [In Chinese]
- Meek, J.L. and Tan, H.S. (1984), "Geometrically non-linear analysis of space frames by an incremental iterative technique", Comput. Methods Appl. Mech. Eng., 47(3), 261-282. https://doi.org/10.1016/0045-7825(84)90079-3
- Nee, K.M. and Halder, A. (1988), "Elasto-plastic non-linear postbuckling analysis of partially restrained space structure", Comput. Methods Appl. Eng., 71(1), 69-97. https://doi.org/10.1016/0045-7825(88)90096-5
- Nie, G.H. (2003), "On the buckling of imperfect squarelyreticulated shallow spherical shells supported by elastic media", Thin-Wall. Struct., 41(1), 1-13. https://doi.org/10.1016/S0263-8231(02)00069-1
- Sassone, M. and Pugnale, A. (2010), "On the optimal design of glass grid shells with planar quadrilateral elements", Int. J. Space Struct., 25(2), 93-105. https://doi.org/10.1260/0266-3511.25.2.93
- Schmidt, H. (2000), "Stability of steel shell structures: General Report", J. Constr. Steel Res., 55(1), 159-181. https://doi.org/10.1016/S0143-974X(99)00084-X
- Simitses, G.J. (1976), An Introduction to the Elastic Stability of Structures, Prentice-Hall, Englewood Cliffs, NJ, USA.
- Yamada, S., Takeuchi, A., Tada, Y. and Tsutsumi, K. (2001), "Imperfection-sensitive overall buckling of single-layer lattice domes", J. Eng. Mech., 127(4), 382-396. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(382)
- Yang, M.F., Xu, Z.D., Huang, X.H. and Ye, H.H. (2014), "Analysis of the collapse of long-span reticulated shell structures under multi-dimensional seismic excitations", Int. J. Acoust. Vib., 19(1), 21-30.
- Zhang, H.D. and Han, Q.H. (2013), "A numerical investigation of seismic performance of large span single-layer latticed domes with semi-rigid joints", Struct. Eng. Mech., Int. J., 48(1), 57-75 https://doi.org/10.12989/sem.2013.48.1.057
- Zhang, A.L., Zhang, X.F. and Ge, J.Q. (2006), "Influence of initial geometrical imperfections on stability of a suspendome for badminton arena for 2008 Olympic Games", Spatial Struct., 12(4), 8-12.
- Zhou, W., Chen, Y., Peng, B., Yang, H., Yu, H.J., Liu, H. and He, X.P. (2014), "Air damping analysis in comb microaccelerometer", Adv. Mech. Eng., 6, 373172. https://doi.org/10.1155/2014/373172
- Zhou, W., Chen, L.L., Yu, H.J., Peng, B. and Chen, Y. (2016), "Sensitivity jump of micro accelerometer induced by microfabrication defects of micro folded beams", Measure. Sci. Rev., 16(4), 228-234. https://doi.org/10.1515/msr-2016-0028