DOI QR코드

DOI QR Code

A New Formulation for Coordination of Directional Overcurrent Relays in Interconnected Networks for Better Miscoordination Suppression

  • Received : 2016.11.11
  • Accepted : 2016.12.09
  • Published : 2017.06.25

Abstract

A safe and reliable protection system in distribution networks, specifically, those hosting distribution generation units, needs a robust over-current protection scheme. To avoid unintentional DG disconnection during fault conditions, a protection system should operate quickly and selectively. Therefore, to achieve this aim, satisfying coordination constraints are important for any protection scheme in distribution networks; these pose a challenging task in interconnected and large-scale networks. In this paper, a new coordination strategy, based on the same non-standard time-current curve for all relays, in order to find optimal coordination of directional over-current relays, is proposed. The main aim is to reduce violations, especially miscoordination between pair relays. Besides this, the overall time of operation of relays during primary and backup operations should be minimized concurrently. This work is being tackled based on genetic algorithms and motivated by the heuristic algorithm. For the numerical analysis, to show the superiority of this coordination strategy, the IEEE 30-bus test system, with a mesh structure and supplemented with distributed generation, is put under extensive simulations, and the obtained results are discussed in depth.

Keywords

References

  1. M. Farsadi, A. Yazdaninejadi, and A. Esmaeilynasab, Proc. 2015 9th International Conference on Electrical and Electronics Engineering (IEEE, Bursa, Turkey, 2015). [DOI: https://doi.org/10.1109/ELECO.2015.7394439]
  2. B. Hussain, S. M. Sharkh, and S. Hussain, Proc. 2010 International Symposium on Power Electronics Electrical Drives Automation and Motion (IEEE, Pisa, Italy, 2010). [DOI: https://doi.org/10.1109/SPEEDAM.2010.5545061]
  3. D. G. Hart, Proc. 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century (IEEE, Pennsylvania, USA, 2008) p. 1.
  4. H. R. Baghaee, M. Mirsalim, M. J. Sanjari, and G. B. Gharehpetian, Proc. 13th Power Electronics and Motion Control Conference, (IEEE, Poznan, Poland, 2008). [DOI: https://doi.org/10.1109/epepemc.2008.4635284].
  5. C.A.C. Salazar, A. C. Enríquez, and S. E. Schaeffer, Electr. Power Syst. Res., 122, 42 (2015). [DOI: https://doi.org/10.1016/j.epsr.2014.12.018]
  6. A. Yazdaninejadi, D. Nazarpour, and S. Golshannavaz, Int. J. Elec. Power & Energ. Syst., 86, 163 (2017). [http://dx.doi.org/10.1016/j.ijepes.2016.10.004].
  7. J. Jannati, A. Yazdaninejadi, and D. Nazarpour, Trans. Electr. Electron. Mater., 17, 341 (2016). [DOI: http://dx.doi.org/10.4313/TEEM.2016.17.6.341]
  8. M. Mezaache, K. Chikhi, and C. Fetha, Trans. Electr. Electron. Mater. , 17, 1 (2016). [DOI: https://doi.org/10.4313/TEEM.2016.17.1.1]
  9. L. Yinhong, S. Dongyuan, and D. Xianzhong, Proc. Power Engineering Society Summer Meeting (IEEE, Vancouver, Canada, 2001). [DOI: https://doi.org/10.1109/pess.2001.970266]
  10. R. E. Albrecht, M. J. Nisja, W. E. Feero, G. D. Rockefeller, and C. L. Wagner, IEEE Trans. Power App., 83, 402 (1964). [DOI: https://doi.org/10.1109/TPAS.1964.4766018]
  11. H. H. Zeineldin, H. M. Sharaf, D. K. Ibrahim, A. El-Zahab, and E. El-Din, IEEE Trans Smart Grid, 6, 115 (2015). [DOI: https://doi.org/10.1109/TSG.2014.2357813]
  12. H. B. Elrafie, and M. R. Irving, Electr. Power Syst. Res., 27, 209 (1993). [DOI: https://doi.org/10.1016/0378-7796(93)90047-I]
  13. M. H. Hussain, S.R.A. Rahim, and I. Musirin, Procedia Engineering, 53, 332 (2013). [DOI: https://doi.org/10.1016/j.proeng.2013.02.043]
  14. M. M. Mansour, S. F. Mekhamer, and N.E.S. El-Kharbawe, IEEE Trans. Power Delivery, 22, 1400 (2007). [DOI: https://doi.org/10.1109/TPWRD.2007.899259]
  15. M. Farzinfar, M. Jazaeri, and F. Razavi, Int. J. Elec. Power, 61, 620 (2014). [DOI: https://doi.org/10.1016/j.ijepes.2014.04.001]
  16. T. S. Ustun, C. Ozansoy, and A. Zayegh, IEEE Trans. Power Syst., 27, 1560 (2012). [DOI: https://doi.org/10.1109/TPWRS.2012.2185072]
  17. H. M. Sharaf, H. H. Zeineldin, and E. El-Saadany, IEEE Trans. Smart Grid, PP, 1 (2016). [DOI: https://doi.org/10.1109/TSG.2016.2546961]
  18. M. Alipour, S. Teimourzadeh, and H. Seyedi, Swarm Evol. Comput., 23, 40 (2015). [DOI: https://doi.org/10.1016/j.swevo.2015.03.003]
  19. R. Mohammadi, H. A. Abyaneh, H. M. Rudsari, S. H. Fathi, and H. Rastegar, IEEE Trans. Power Delivery, 26, 1927 (2011). [DOI: https://doi.org/10.1109/TPWRD.2011.2123117]
  20. A. Azari and M. Akhbarim, Int. Trans. Electr. Energy Syst., 25, 2310 (2014). [DOI: https://doi.org/10.1002/etep.1962]
  21. P. P. Bedekar and S. R. Bhide, IEEE Trans. Power Delivery, 26, 109 (2011). [DOI: https://doi.org/10.1109/TPWRD.2010.2080289]
  22. F. Adelnia, Z. Moravej, and M Farzinfar. Int. Trans. Electr. Energy Syst., 25, 120 (2015): [DOI: https://doi.org/10.1002/etep.1828]
  23. Z. Moravej, F. Adelnia, and F. Abbasi, Electr. Power Syst. Res., 119, 228 (2015). [DOI: https://doi.org/10.1016/j.epsr.2014.09.010]
  24. H. M. Sharaf, H. H. Zeineldin, D. K. Ibrahim, and E. L. Essam, Int. J. Elec. Power, 65, 49 (2015). [DOI: https://doi.org/10.1016/j.ijepes.2014.09.028]
  25. K. A. Saleh, H. H. Zeineldin, A. Al-Hinai, and E. F. El-Saadany, IET Gener. Transm. Distrib., 9, 1332 (2015). [DOI: https://doi.org/10.1049/iet-gtd.2014.0683]
  26. R. Christie, Power system test cases, www.ee.washington.edu/resesrch/pstca (1993).