DOI QR코드

DOI QR Code

Ag@Fe3O4 코어-쉘 나노입자의 광학적 특성

Optical Properties of Ag@Fe3O4 Core-Shell Nanoparticles

  • 송윤성 (부산대학교 인지메카트로닉스공학과) ;
  • 고광락 (부산대학교 교양교육원) ;
  • 김규정 (부산대학교 인지메카트로닉스공학과) ;
  • 이재범 (부산대학교 인지메카트로닉스공학과)
  • Song, Younseong (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Koh, Kwangnak (Institute of General Education, Pusan National University) ;
  • Kim, Kyujung (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Lee, Jaebeom (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 투고 : 2017.01.09
  • 심사 : 2017.02.25
  • 발행 : 2017.06.25

초록

본 논문에서는 플라즈모닉 코어와 자성 쉘로 구성된 $Ag@Fe_3O_4$ 나노입자의 흥미로운 광학적 특성에 대해 연구를 하였다. 기존의 60 nm의 지름을 갖는 은 나노입자의 표면에 높은 굴절률을 갖는 $Fe_3O_4$ 쉘이 형성됨에 따라 국소 표면 플라즈몬 공명(Localized surface plasmon resonance; LSPR) 파장이 420 nm에서 650 nm로 이동하는 red-shift 현상을 관찰 할 수 있었고, 또한, 세 가지 시뮬레이션 모델들 ($Ag@Fe_3O_4$ 나노입자, $Fe_3O_4$ 쉘 나노입자, 은 나노입자)을 통해서 410 nm 파장의 peak이 60 nm의 두께를 가진 $Fe_3O_4$ 쉘에 의해 발생하는 산란이 주된 원인이라는 것을 규명하였다. 이 결과는 비슷한 종류의 나노입자를 이용한 추후 다양하고 복잡한 나노어셈블리의 광학적 현상을 이해하는데 사용될 것이다.

In this paper, we investigate the optical properties of $Ag@Fe_3O_4$ nanoparticles (NPs) composed of a plasmonic core and a magnetic shell. As the $Fe_3O_4$ shell with high refractive index (~2.42) is formed on the surface of the silver NPs having diameter of 60 nm, the wavelength of the localized surface-plasmon resonance (LSPR) is shifted from 420 nm to 650 nm, a so-called "redshift". Furthermore, through the use of three simulation models ($Ag@Fe_3O_4$ NP, $Fe_3O_4$ shell NP, and silver NP), the peak at 410 nm is seen to be the result of scattering by the $Fe_3O_4$ shell with 60 nm thickness, which would be useful in comprehending the complex optics in various nanoscale assemblies using similar NPs.

키워드

참고문헌

  1. E. Petryayeva and U. J. Krull, "Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review," Analytica chimica acta 706, 8-24 (2011). https://doi.org/10.1016/j.aca.2011.08.020
  2. S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).
  3. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," Journal of Applied Physics 98, 011101 (2005). https://doi.org/10.1063/1.1951057
  4. Z. Xu, Y. Hou, and S. Sun, "Magnetic core/shell $Fe_3O_4/Au$ and $Fe_3O_4/Au/Ag$ nanoparticles with tunable plasmonic properties," Journal of the American Chemical Society 129, 8698-8699 (2007). https://doi.org/10.1021/ja073057v
  5. Y. Li, Q. Zhang, A. V. Nurmikko, and S. Sun, "Enhanced magnetooptical response in dumbbell-like $Ag-CoFe_2O_4$ nanoparticle pairs," Nano letters 5, 1689-1692 (2005). https://doi.org/10.1021/nl050814j
  6. J. Bao, W. Chen, T. Liu, Y. Zhu, P. Jin, L. Wang, J. Liu, Y. Wei, and Y. Li, "Bifunctional $Au-Fe_3O_4$ nanoparticles for protein separation," Acs Nano 1, 293-298 (2007). https://doi.org/10.1021/nn700189h
  7. A. Mezni, I. Balti, A. Mlayah, N. Jouini, and L. S. Smiri, "Hybrid $Au-Fe_3O_4$ nanoparticles: plasmonic, surface enhanced Raman scattering, and phase transition properties," The Journal of Physical Chemistry C 117, 16166-16174 (2013). https://doi.org/10.1021/jp4040826
  8. W. Jiang, Y. Zhou, Y. Zhang, S. Xuan, and X. Gong, "Superparamagnetic $Ag@Fe_3O_4$ core-shell nanospheres:fabrication, characterization and application as reusable nanocatalysts," Dalton Transactions 41, 4594-4601 (2012). https://doi.org/10.1039/c2dt12307j
  9. J. T. Seil and T. J. Webster, "Antimicrobial applications of nanotechnology: methods and literature," Int J Nanomedicine7, 2767-2781 (2012).
  10. S. Vaidya, A. Kar, A. Patra, and A. K. Ganguli, "Core-Shell (CS) nanostructures and their application based on magnetic and optical properties," Reviews in Nanoscience and Nanotechnology 2, 106-126 (2013). https://doi.org/10.1166/rnn.2013.1027
  11. M. Brollo, J. Orozco-Henao, R. Lopez-Ruiz, D. Muraca, C. Dias, K. Pirota, and M. Knobel, "Magnetic hyperthermia in brick-like $Ag@Fe_3O_4$ core-shell nanoparticles," Journal of Magnetism and Magnetic Materials 397, 20-27 (2016). https://doi.org/10.1016/j.jmmm.2015.08.081
  12. Y. Zhang, H. Ding, Y. Liu, S. Pan, Y. Luo, and G. Li, "Facile one-step synthesis of plasmonic/magnetic core/shell nanostructures and their multifunctionality," Journal of Materials Chemistry 22, 10779-10786 (2012). https://doi.org/10.1039/c2jm16293h
  13. J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gosele, "Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays," Advanced Materials 19, 2643-2647 (2007). https://doi.org/10.1002/adma.200602938
  14. G. Armelles, A. Cebollada, A. Garciia-Martiuin, J. Montero-Moreno, M. Waleczek, and K. Nielsch, "Magneto-optical properties of core-shell magneto-plasmonic $Au-Co_xFe_{3-x}O_4$ Nanowires," Langmuir 28, 9127-9130 (2012). https://doi.org/10.1021/la300431a
  15. P. B. Johnson and R.-W. Christy, "Optical constants of the noble metals," Physical review B 6, 4370 (1972). https://doi.org/10.1103/PhysRevB.6.4370
  16. X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, "Plasmonic photocatalysis," Reports on Progress in Physics 76, 046401 (2013). https://doi.org/10.1088/0034-4885/76/4/046401
  17. C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. Konig, and A. Fery, "Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly," Nano letters 14, 6863-6871 (2014). https://doi.org/10.1021/nl502776s
  18. D. Stuart, A. Haes, C. Yonzon, E. Hicks, and R. Van Duyne, "Biological applications of localised surface plasmonic phenomenae," in IEE Proceedings-Nanobiotechnology, (IET, 2005), 13-32.
  19. G. Barbillon, J. L. Bijeon, J. S. Bouillard, J. Plain, M. Lamy De la Chapelle, P. M. ADAM, and P. Royer, "Detection in near-field domain of biomolecules adsorbed on a single metallic nanoparticle," Journal of Microscopy 229, 270-274 (2008). https://doi.org/10.1111/j.1365-2818.2008.01898.x
  20. G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. Ou, A. Descamps, P. Perriat, and A. Vial, "How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence," Nanotechnology 19, 035705 (2007).
  21. O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, "Sensitivity and optimization of localized surface plasmon resonance transducers," ACS Nano 5, 748-760 (2011). https://doi.org/10.1021/nn102617d