References
- Anderson TW and Rubin H (1956). Statistical inference in factor analysis. In Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, 111-150.
- Antoniadis A (1997). Wavelets in statistics: a review, Journal of the Italian Statistical Society, 6, 97-144. https://doi.org/10.1007/BF03178905
- Breiman L (1995). Better subset regression using the nonnegative garrote, Technometrics, 37, 373-384. https://doi.org/10.1080/00401706.1995.10484371
- Cadima J and Jolliffe IT (1995). Loadings and correlations in the interpretation of principal compo-nents, Journal of Applied Statistics, 22, 203-214 https://doi.org/10.1080/757584614
- Fan J (1997). Comments on 'wavelets in statistics: a review' by A. Antoniadis, Journal of the Italian Statistical Society, 6, 131-138. https://doi.org/10.1007/BF03178906
- Fan J and Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Fan J and Peng H (2004). Nonconcave penalized likelihood with a diverging number of parameters, The Annals of Statistics, 32, 928-961. https://doi.org/10.1214/009053604000000256
- Fu WJ (1998). Penalized regressions: the bridge versus the LASSO, Journal of Computational and Graphical Statistics, 7, 397-416.
- Green PJ (1990). On use of the EM for penalized likelihood estimation, Journal of the Royal Statistical Society Series B (Methodological), 52, 443-452. https://doi.org/10.1111/j.2517-6161.1990.tb01798.x
- Hausman RE (1982). Constrained multivariate analysis. In SH Zanckis and JS Rustagi (Eds), Optimisation in Statistics: With a View Towards Applications in Management Science and Operations Research (pp. 137-151), North-Holland, Amsterdam.
- Jeffers JNR (1967). Two case studies in the application of principal component analysis, Applied Statistics, 16, 225-236. https://doi.org/10.2307/2985919
- Jolliffe IT (1972). Discarding variables in a principal component analysis. I: artificial data, Applied Statistics, 21, 160-173. https://doi.org/10.2307/2346488
- Jolliffe IT (1973). Discarding variables in a principal component analysis. II: real data, Applied Statistics, 22, 21-31. https://doi.org/10.2307/2346300
- Jolliffe IT (1989). Rotation of ill-defined principal components, Applied Statistics, 38, 139-147. https://doi.org/10.2307/2347688
- Jolliffe IT (1995). Rotation of principal components: choice of normalization constraints, Journal of Applied Statistics, 22, 29-35. https://doi.org/10.1080/757584395
- Jolliffe IT (2002). Principal Component Analysis, Springer-Verlag, New York.
- Jolliffe IT, Trendafilov NT, and Uddin M (2003). A modified principal component technique based on the LASSO, Journal of Computational and Graphical Statistics, 12, 531-547. https://doi.org/10.1198/1061860032148
- Lawley DN (1953). A modified method of estimation in factor analysis and some large sample results. In Uppsala Symposium on Psychological Factor Analysis, Number 3 in Nordisk Psykologi's Monograph Series (pp. 35-42), Almqvist and Wiksell, Uppsala.
- Tibshirani R (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society Series B (Methodological), 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
- Tipping ME and Bishop CM (1999a). Mixtures of probabilistic principal component analyzers, Neural computation, 11, 443-482. https://doi.org/10.1162/089976699300016728
- Tipping ME and Bishop CM (1999b). Probabilistic principal component analysis, Journal of the Royal Statistical Society Series B (Statistical Methodology), 61, 611-622. https://doi.org/10.1111/1467-9868.00196
- Vines SK (2000). Simple principal components, Journal of the Royal Statistical Society Series C (Applied Statistics), 49, 441-451. https://doi.org/10.1111/1467-9876.00204
- Witten DM, Tibshirani R, and Hastie T (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis, Biostatistics, 10, 515-534. https://doi.org/10.1093/biostatistics/kxp008
- Xie B, Pan W, and Shen X (2010). Penalized mixtures of factor analyzers with application to clustering high-dimensional microarray data, Bioinformatics, 26, 501-508. https://doi.org/10.1093/bioinformatics/btp707
- Zou H, Hastie T, and Tibshirani R (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15, 265-286. https://doi.org/10.1198/106186006X113430