DOI QR코드

DOI QR Code

Design of stepwise foam claddings subjected to air-blast based on Voronoi model

  • Liang, Minzu (College of Science, National University of Defense Technology) ;
  • Lu, Fangyun (College of Science, National University of Defense Technology) ;
  • Zhang, Guodong (College of Science, National University of Defense Technology) ;
  • Li, Xiangyu (College of Science, National University of Defense Technology)
  • Received : 2016.09.12
  • Accepted : 2016.12.14
  • Published : 2017.01.20

Abstract

Design of stepwise foam claddings subjected to air-blast is performed based on random Voronoialgorithm. FE models are constructed using the random Voronoialgorithm, and numerical analysis is carried out to simulate deformation mode and energy absorption of the cladding by the ABAQUS/Explicit software. The FE model is validated by test result, and good agreement is achieved. The deformation patterns are presented to give an insight into the influences of distribution on deformation mechanisms. The energy absorbed by the stepwise foam cladding is examined, and the parameter effects, including layer number, gradient, and blast loading, are discussed. Results indicate that the energy absorption capacity increases with the number of layer, gradient degree, and blast pressure increasing.

Keywords

Acknowledgement

Supported by : China National Natural Science Funding

References

  1. Ajdari, A., Nayeb-Hashemi, H. and Vaziri, A. (2011), "Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures", Int. J. Solids Struct., 48(3-4), 506-516. https://doi.org/10.1016/j.ijsolstr.2010.10.018
  2. Aleyaasin, M., Harrigan, J.J. and Reid, S.R. (2015), "Air-blast response of cellular material with a face plate: An analytical-numerical approach", Int. J. Mech. Sci., 91, 64-70. https://doi.org/10.1016/j.ijmecsci.2014.03.027
  3. Chuda-Kowalska, M. and Garstecki, A. (2016), "Experimental study of anisotropic behavior of PU foam used in sandwich panels", Steel Compos. Struct., Int. J., 20(1), 43-56. https://doi.org/10.12989/scs.2016.20.1.043
  4. Darvizeh, R. and Davey, K. (2015), "A transport approach for analysis of shock waves in cellular materials", Int. J. Impact Eng., 82, 59-73. https://doi.org/10.1016/j.ijimpeng.2014.11.006
  5. Dobratz, B.M. (1981), "Properties of chemical explosives and explosive simulants", International Journal of Neuroscience, 51(3-4), 339-340.
  6. Gama, B.A., Bogetti, T.A., Fink, B.K., Yu, C.-J., Dennis Claar, T., Eifert, H.H. and Gillespie, Jr. J.W. (2001), "Aluminum foam integral armor: a new dimension in armor design", Compos. Struct., 52(3-4), 381-395. https://doi.org/10.1016/S0263-8223(01)00029-0
  7. Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, UK.
  8. Guruprasad, S. and Mukherjee, A. (2000a), "Layered sacrificial claddings under blast loading Part I - Analytical studies", Int. J. Impact Eng., 24(9), 957-973. https://doi.org/10.1016/S0734-743X(00)00004-X
  9. Guruprasad, S. and Mukherjee, A. (2000b), "Layered sacrificial claddings under blast loading Part II - Experimental studies", Int. J. Impact Eng., 24(9), 975-984. https://doi.org/10.1016/S0734-743X(00)00005-1
  10. Hanssen, A.G., Enstock, L. and Langseth, M. (2002), "Close-range blast loading of aluminium foam panels", Int. J. Impact Eng., 27(6), 593-618. https://doi.org/10.1016/S0734-743X(01)00155-5
  11. Honig, A. and Stronge, W.J. (2002), "In-plane dynamic crushing of honeycomb. Part II: Application to impact", Int. J. Mech. Sci., 44(8), 1697-1714. https://doi.org/10.1016/S0020-7403(02)00061-9
  12. Karagiozova, D. and Alves, M. (2014), "Compaction of a doublelayered metal foam block impacting a rigid wall", Int. J. Solids Struct., 51(13), 2424-2438. https://doi.org/10.1016/j.ijsolstr.2014.03.012
  13. Karagiozova, D. and Alves, M. (2015), "Propagation of compaction waves in cellular materials with continuously varying density", Int. J. Solids Struct., 71, 323-337. https://doi.org/10.1016/j.ijsolstr.2015.07.005
  14. Karagiozova, D., Langdon, G.S. and Nurick, G.N. (2010), "Blast attenuation in Cymat foam core sacrificial claddings", Int. J. Mech. Sci., 52(5), 758-776. https://doi.org/10.1016/j.ijmecsci.2010.02.002
  15. Li, S., Lu, G., Wang, Z., Zhao, L. and Wu, G. (2015a), "Finite element simulation of metallic cylindrical sandwich shells with graded aluminum tubular cores subjected to internal blast loading", Int. J. Mech. Sci., 96-97, 1-12. https://doi.org/10.1016/j.ijmecsci.2015.03.011
  16. Li, F., Sun, G., Huang, X., Rong, J. and Li, Q. (2015b), "Multiobjective robust optimization for crashworthiness design of foam filled thin-walled structures with random and interval uncertainties", Eng. Struct., 88, 111-124. https://doi.org/10.1016/j.engstruct.2015.01.023
  17. Liao, S., Zheng, Z. and Yu, J. (2013), "Dynamic crushing of 2D cellular structures: Local strain field and shock wave velocity", Int. J. Impact Eng., 57, 7-16. https://doi.org/10.1016/j.ijimpeng.2013.01.008
  18. Liu, Y.D., Yu, J.L., Zheng, Z.J. and Li, J.R. (2009), "A numerical study on the rate sensitivity of cellular metals", Int. J. Solids Struct., 46(22-23), 3988-3998. https://doi.org/10.1016/j.ijsolstr.2009.07.024
  19. Ma, G.W. and Ye, Z.Q. (2007), "Analysis of foam claddings for blast alleviation", Int. J. Impact Eng., 34(1), 60-70. https://doi.org/10.1016/j.ijimpeng.2005.10.005
  20. Ma, G.W., Ye, Z.Q. and Shao, Z.S. (2009), "Modeling loading rate effect on crushing stress of metallic cellular materials", Int. J. Impact Eng., 36(6), 775-782. https://doi.org/10.1016/j.ijimpeng.2008.11.013
  21. Main, J.A. and Gazonas, G.A. (2008), "Uniaxial crushing of sandwich plates under air blast: Influence of mass distribution", Int. J. Solids Struct., 45(7-8), 2297-2321. https://doi.org/10.1016/j.ijsolstr.2007.11.019
  22. Merrett, R.P., Langdon, G.S. and Theobald, M.D. (2013), "The blast and impact loading of aluminium foam", Mater. Des., 44, 311-319. https://doi.org/10.1016/j.matdes.2012.08.016
  23. Mines, R.A.W. (2004), "A one-dimensional stress wave analysis of a lightweight composite armour", Compos. Struct., 64(1), 55-62. https://doi.org/10.1016/S0263-8223(03)00213-7
  24. Reid, S.R. and Peng, C. (1997), "Dynamic uniaxial crushing of wood", Int. J. Impact Eng., 19(5-6), 531-570. https://doi.org/10.1016/S0734-743X(97)00016-X
  25. Shen, C.J., Lu, G. and Yu, T.X. (2014), "Investigation into the behavior of a graded cellular rod under impact", Int. J. Impact Eng., 74, 92-106. https://doi.org/10.1016/j.ijimpeng.2014.02.015
  26. Shen, J., Lu, G., Zhao, L. and Zhang, Q. (2013), "Short sandwich tubes subjected to internal explosive loading", Eng. Struct., 55, 56-65. https://doi.org/10.1016/j.engstruct.2011.12.005
  27. Tan, P.J., Reid, S.R., Harrigan, J.J., Zou, Z. and Li, S. (2005), "Dynamic compressive strength properties of aluminium foams. Part II-'shock' theory and comparison with experimental data and numerical models", J. Mech. Phys. Solids, 53(10), 2206-2230. https://doi.org/10.1016/j.jmps.2005.05.003
  28. Wang, X., Zheng, Z. and Yu, J. (2013), "Crashworthiness design of density-graded cellular metals", Theor. Appl. Mech. Lett., 3(3), 031001-031001-031005.
  29. Wang, P., Xu, S., Li, Z., Yang, J., Zhang, C., Zheng, H. and Hu, S. (2015), "Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading", Mater. Sci. Eng., A, 620, 253-261. https://doi.org/10.1016/j.msea.2014.10.026
  30. Xie, Z., Yan, Q. and Li, X. (2014), "Investigation on low velocity impact on a foam core composite sandwich panel", Steel Compos. Struct., Int. J., 17(2), 159-172. https://doi.org/10.12989/scs.2014.17.2.159
  31. Xue, Z. and Hutchinson, J.W. (2006), "Crush dynamics of square honeycomb sandwich cores", Int. J. Numer. Methods Eng., 65(13), 2221-2245. https://doi.org/10.1002/nme.1535
  32. Ye, Z.Q. and Ma, G.W. (2007), "Effects of foam claddings for structure protection against blast loads", J. Eng. Mech., 133(1), 41-47. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:1(41)
  33. Yurddaskal, M. and Baba, B.O. (2016), "The effect of curvature on the impact response of foam-based sandwich composite panels", Steel Compos. Struct., Int. J., 20(5), 983-997. https://doi.org/10.12989/scs.2016.20.5.983
  34. Zhang, J., Wang, Z. and Zhao, L. (2016), "Dynamic response of functionally graded cellular materials based on the Voronoi model", Compos. Part B, 85, 176-187. https://doi.org/10.1016/j.compositesb.2015.09.045
  35. Zheng, Z., Yu, J. and Li, J. (2005), "Dynamic crushing of 2D cellular structures: A finite element study", Int. J. Impact Eng., 32(1-4), 650-664. https://doi.org/10.1016/j.ijimpeng.2005.05.007
  36. Zheng, Z., Yu, J., Wang, C., Liao, S. and Liu, Y. (2013), "Dynamic crushing of cellular materials: A unified framework of plastic shock wave models", Int. J. Impact Eng., 53, 29-43. https://doi.org/10.1016/j.ijimpeng.2012.06.012
  37. Zheng, Z., Wang, C., Yu, J., Reid, S.R. and Harrigan, J.J. (2014), "Dynamic stress-strain states for metal foams using a 3D cellular model", J. Mech. Phys. Solids, 72, 93-114. https://doi.org/10.1016/j.jmps.2014.07.013
  38. Zheng, J., Qin, Q. and Wang, T.J. (2016), "Impact plastic crushing and design of density-graded cellular materials", Mech. Mater., 94, 66-78. https://doi.org/10.1016/j.mechmat.2015.11.014
  39. Zhou, H., Wang, X. and Zhao, Z. (2016), "High velocity impact mitigation with gradient cellular solids", Compos. Part B, 85, 93-101. https://doi.org/10.1016/j.compositesb.2015.09.042
  40. Zhu, H.X., Hobdell, J.R. and Windle, A.H. (2001), "Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs", J. Mech. Phys. Solids, 49(4), 857-870. https://doi.org/10.1016/S0022-5096(00)00046-6
  41. Zhu, H.X., Thorpe, S.M. and Windle, A.H. (2006), "The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs", Int. J. Solids Struct., 43(5), 1061-1078. https://doi.org/10.1016/j.ijsolstr.2005.05.008

Cited by

  1. Compaction Wave Propagation in Layered Cellular Materials Under Air-Blast vol.11, pp.1, 2019, https://doi.org/10.1142/s1758825119500030
  2. Dynamic Compressive Behaviors of Two-Layer Graded Aluminum Foams under Blast Loading vol.12, pp.9, 2017, https://doi.org/10.3390/ma12091445
  3. Factors governing dynamic response of steel-foam ceramic protected RC slabs under blast loads vol.33, pp.3, 2017, https://doi.org/10.12989/scs.2019.33.3.333