DOI QR코드

DOI QR Code

Hygrothermal analysis of laminated composites using C0 FE model based on higher order zigzag theory

  • Singh, S.K. (School of Civil Engineering, Galgotias University) ;
  • Chakrabarti, A. (Department of Civil Engineering, Indian Institute of Technology)
  • Received : 2016.02.26
  • Accepted : 2016.12.08
  • Published : 2017.01.20

Abstract

A $C^0$ FE model developed based on an efficient higher order zigzag theory is used for hygrothermal analysis of laminated composite plates. The $C^0$ FE model satisfies the inter-laminar shear stress continuity at the interfaces and zero transverse shear stress conditions at plate top and bottom. In this model the first derivatives of transverse displacement have been treated as independent variables to circumvent the problem of $C^1$ continuity associated with the above plate theory. In the present theory the above mentioned $C^0$ continuity of the present element is compensated in the stiffness matrix formulation by using penalty parameter approach. In order to avoid stress oscillations observed in the displacement based finite element, the stress field derived from temperature/moisture fields (initial strains) must be consistent with total strain field. Special steps are introduced by field consistent approach (e.g., sampling at gauss points) to compensate this problem. A nine noded $C^0$ continuous isoparametric element is used in the proposed FE model. Comparison of present numerical results with other existing solutions shows that the proposed FE model is efficient, accurate and free of locking.

Keywords

References

  1. Ali, J.S.M., Bhaskar, K. and Varadan, T.K. (1999), "A new theory for accurate thermal/mechanical flexural analysis of symmetric laminated plates", Compos. Struct., 45(3), 227-232. https://doi.org/10.1016/S0263-8223(99)00028-8
  2. Bahrami, A. and Nosier, A. (2007), "Interlaminar hygrothermal stresses in laminated shells", Int. J. Solids Struct., 44(25-26), 8119-8142. https://doi.org/10.1016/j.ijsolstr.2007.06.004
  3. Bhaskar, K., Varadan, T.K. and Ali, J.S.M. (1996), "Thermoelastic solutions for orthotropic and anisotropic composite laminates", Compos.: Part B, 27(5), 415-420. https://doi.org/10.1016/1359-8368(96)00005-4
  4. Brischetto, S. (2012), "hygrothermal loading effects in bending analysis of multilayered composite plates", Comput. Model. Eng. Sci., 88(5), 367-418.
  5. Brischetto, S. (2013), "Hygrothermoelastic analysis of multilayered composite and sandwich shells", J. Sandw. Struct. Mater., 15(2), 168-202. https://doi.org/10.1177/1099636212471358
  6. Brischetto, S. and Carrera, E. (2010), "Coupled thermo-mechanical analysis of one-layered and multilayered plates", Compos. Struct., 92(8), 1793-1812. https://doi.org/10.1016/j.compstruct.2010.01.020
  7. Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., Int. J., 20(1), 205-2225. https://doi.org/10.12989/scs.2016.20.1.205
  8. Hadji, L., Daouadji, T., Tounsi, A. and Bedia, E. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., Int. J., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507
  9. Kaci, A., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2014), "Nonlinear cylindrical bending analysis of E-FGM plates with variable thickness", Steel Compos. Struct., Int. J., 16(4), 339-356. https://doi.org/10.12989/scs.2014.16.4.339
  10. Kant, T., Pandhari, S.S. and Desai, Y.M. (2008), "An efficient semi analytical model for composite and sandwich plates subjected to thermal load", J. Therm. Stress., 31(1), 77-103. https://doi.org/10.1080/01495730701738264
  11. Kapuria, S. and Achary, G.G.S. (2004), "An efficient higher-order zigzag theory for laminated plates subjected to thermal loading", Int. J. Solids and Struct., 41(16-17), 4661-4684. https://doi.org/10.1016/j.ijsolstr.2004.02.020
  12. Khare, R.K., Kant, T. and Garg, A.K. (2003), "Closed-form thermo-mechanical solutions of higher-order theories of crossply laminated shallow shells", Compos. Struct., 59(3), 313-340. https://doi.org/10.1016/S0263-8223(02)00245-3
  13. Matsunaga, H. (2004), "A comparison between 2-D single layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings", Compos. Struct., 64(2), 161-177. https://doi.org/10.1016/j.compstruct.2003.08.001
  14. Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), "A refined higherorder shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091
  15. Lo, K.H., Christensen, R.M. and Wu, E.M. (1977a), "A high-order theory of plate deformation, Part 1: Homogeneous plates", ASME J. Appl. Mech., 44(4), 663-668. https://doi.org/10.1115/1.3424154
  16. Lo, K.H., Christensen, R.M. and Wu, E.M. (1977b), "A high-order theory of plate deformation, Part 2: Laminated plates", ASME J. Appl. Mech., 44(4), 669-676. https://doi.org/10.1115/1.3424155
  17. Lo, S.H., Wu, Z., Cheung, Y.K. and Chen, W. (2010), "Hygrothermal effects on multilayered composite plates using a refined higher-order theory", Compos. Struct., 92(3), 633-646. https://doi.org/10.1016/j.compstruct.2009.09.034
  18. Makhecha, D.P., Ganapathi, M. and Patel, B.P. (2001), "Dynamic analysis of laminated composite plates subjected to thermal/mechanical loads using an accurate theory", Compos. Struct., 51(3), 221-236. https://doi.org/10.1016/S0263-8223(00)00133-1
  19. Matsunaga, H. (2005), "Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higherorder deformation theory", Compos. Struct., 68(4), 439-454. https://doi.org/10.1016/j.compstruct.2004.04.010
  20. Matsunaga, H. (2007), "Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading", Compos. Struct., 77(2), 249-262. https://doi.org/10.1016/j.compstruct.2005.07.002
  21. Naganarayana, B.P., Rama Mohan, P. and Prathap, G. (1995), "Quadrileteral $C^0$ laminated plate elements based on higher order transverse deformation theory", Int. J. Eng. Anal. Des., 2, 157-178.
  22. Naganarayana, B.P., Rama Mohan, P. and Prathap, G. (1997), "Accurate thermal stress predictions using $C^0$ continuous higher-order shear deformable elements", Comput. Methods Appl. Mech. Eng., 144(1-2), 61-75. https://doi.org/10.1016/S0045-7825(96)01171-1
  23. Noor, A.K. and Burton, W.S. (1992), "Three-dimensional solutions for the thermal buckling and sensitivity derivatives of temperature-sensitive multilayered angle-ply plates", Transact. ASME, J. Appl. Mech., 59(4), 848-856. https://doi.org/10.1115/1.2894052
  24. Oh, J.H. and Cho, M.H. (2007), "Higher order zigzag theoryforsmart composite shell sunder mechanical-thermoelectric loading", Int. J. Solids Struct., 44(1), 100-127. https://doi.org/10.1016/j.ijsolstr.2006.04.017
  25. Ojalvo, I.V. (1974), "Improved thermal stress determination by finite element methods", J. AIAA, 12(8), 1131-1132. https://doi.org/10.2514/3.49424
  26. Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2008), "An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core", Finite. Elem. Anal. Des., 44(9-10), 602-610. https://doi.org/10.1016/j.finel.2008.02.001
  27. Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Compos. Struct., 56(1), 25-34. https://doi.org/10.1016/S0263-8223(01)00182-9
  28. Pittr, J. and Hartl, H. (1980), "Improved stress evaluation under thermal load for simple finite element", Int. J. Numer. Meth. Eng., 15(10), 1507-1515. https://doi.org/10.1002/nme.1620151007
  29. Prathap, G. and Naganarayana, B.P. (1990), "Consistent force resultant distributions in displacement elements with varying sectional properties", Int. J. Numer. Meths. Eng., 29(4), 775-783. https://doi.org/10.1002/nme.1620290407
  30. Prathap, G. and Naganarayana, B.P. (1995), "Consistent thermal stress evaluation in finite elements", Comput. Struct., 54(3), 415-426. https://doi.org/10.1016/0045-7949(94)00338-4
  31. Rama Mohan, P., Naganarayana, B.P. and Prathap, G. (1994), "Consistent and variationally correct finite elements for higher order laminated plate theory", Composite Struct., 29(3-4), 445-456. https://doi.org/10.1016/0263-8223(94)90113-9
  32. Rolfes, R., Noor, A.K. and Sparr, H. (1998), "Evaluation of tranverse thermal stresses in composite plates based on firstorder shear deformation theory", Comput. Methods Appl. Mech. Eng., 167, 355-368. https://doi.org/10.1016/S0045-7825(98)00150-9
  33. Savoia, M. and Reddy, J.N. (1995), "Three-dimensional thermal analysis of laminated composite plates", Int. J. Solids Struct., 32(5), 593-608. https://doi.org/10.1016/0020-7683(94)00146-N
  34. Shankara, C. and Iyengar, N. (1996), "A $C^0$ element for the free vibration analysis of laminated composite plates", J. Sound Vib., 191(5), 721-738. https://doi.org/10.1006/jsvi.1996.0152
  35. Singh, S.K. and Chakrabarti, A. (2011), "Hygrothermal analysis of laminated composite plates by using efficient higher order shear deformation theory", J. Solid Mech., 3(1), 85-95.
  36. Topal, U. (2013), "Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates", Steel Compos. Struct., Int. J., 14(3), 283-293. https://doi.org/10.12989/scs.2013.14.3.283
  37. Tungikar, V.B. and Rao, K.M. (1994), "Three-dimensional exact solution of thermal stresses in rectangular composite laminate", Compos. Struct., 27(4), 419-430. https://doi.org/10.1016/0263-8223(94)90268-2
  38. Wang, X., Dong, K. and Wang, X.Y. (2005), "Hygrothermal effect on dynamic interlaminar stresses in laminated plates with piezoelectric actuators", Compos. Struct., 71(2), 220-228. https://doi.org/10.1016/j.compstruct.2004.10.004
  39. Wu, Z. and Chen, W. (2006), "An efficient higher-order theory and finite element for laminated plates subjected to thermal loading", Compos. Struct., 73(1), 99-109. https://doi.org/10.1016/j.compstruct.2005.01.034
  40. Wu, Z., Cheng, Y.K., Lo, S.H. and Chen, W. (2007), "Thermal stress analysis of laminated plates using actual temperature field", Int. J. Mech. Sci., 49(11), 1276-1288. https://doi.org/10.1016/j.ijmecsci.2007.03.007