References
- ABAQUS/standard user's manual (1998), Vols. I-III, Version 5.8; Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI, USA.
- Argyris, J.H. and Symeonidis, Sp. (1981), "Nonlinear finite element analysis of elastic system under nonconservative loading - natural formulation, part1, quasistatic problems", Comput. Methods Appl. Mech. Eng., 26(1), 75-123. https://doi.org/10.1016/0045-7825(81)90131-6
- Altman, W. and Oliveira, M.G.D. (1988), "Vibration and Stability cantilevered cylindrical shell panels under follower forces", J. Sound Vib., 122(2), 291-298. https://doi.org/10.1016/S0022-460X(88)80355-9
- Altman, W. and Oliveira, M.G.D. (1990), "Vibration and Stability shell panels with slight internal damping under follower forces", J. Sound Vib., 136(1), 45-50. https://doi.org/10.1016/0022-460X(90)90936-T
- Altman, W. and Oliveira, M.G.D. (1987), "Stability of cylindrical shell panels subjected to follower forces based on a mixed finite element formulation", Comput. Struct., 27(3), 367-372. https://doi.org/10.1016/0045-7949(87)90060-5
- Bich, D.H., Ninh, D.G. and Tran, I.T. (2016), "Non-linear buckling analysis of FGM toroidal shell segments filled inside by an elastic medium under external pressure loads including temperature effects", Compos. Part B, 87, 75-91. https://doi.org/10.1016/j.compositesb.2015.10.021
- Bolotin, V.V. (1963), Nonconservative Problems of the Theory of Elastic Stability, Pergamon Press, New York, NY, USA, pp. 53-55.
- Cagdas, I.U. and Adali, S. (2011), "Buckling of cross-ply cylinders under hydrostatic pressure considering pressure stiffness", Ocean Eng., 38(4), 559-569. https://doi.org/10.1016/j.oceaneng.2010.12.005
- Carnoy, E.G., Guennoun, N. and Sander, G. (1984), "Static buckling analysis of shell submitted to follower force by finite elment method", Comput. Struct., 19(1-2), 41-49. https://doi.org/10.1016/0045-7949(84)90201-3
- Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material", Int. J. Solids Struct., 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
- Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Ending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
- Cohen, G.A. (1966), "Conservative of a normal pressure field acting on a shell", AIAA, 4(10), 1886-1886.
- Datta, P.K. and Biswas, S. (2011), "Aeroelastic behaviour of aerospace structural Elements with Follower Force: A review", J. Aeronaut. Space Sci., 12(2), 134-148. https://doi.org/10.5139/IJASS.2011.12.2.134
- Dung, D.V. and Hoa, L.K. (2015), "Nonlinear torsional buckling and postbuckling of eccentrically stiffened FGM cylindrical shells in thermal environment", Compos.: Part B, 69, 378-388. https://doi.org/10.1016/j.compositesb.2014.10.018
- Duc, N.D., Thang, P.T., Dao, N.T. and Tac, H.V. (2015), "Nonlinear buckling of higher deformable S-FGM thick circular cylindrical shells with metal-ceramic-metal layers surrounded on elastic foundations in thermal environment", Compos. Struct.res, 121, 134-141. https://doi.org/10.1016/j.compstruct.2014.11.009
- Fantuzzi, N., Brischetto, S., Tornabene, F. and Viola, E. (2016), "2D and 3D shell models for the free vibration investigation of functionally graded cylindrical and spherical panels", Compos. Struct., 154, 573-590. https://doi.org/10.1016/j.compstruct.2016.07.076
- Ganapathi, M. (2007), "Dynamic stability characteristics of functionally graded materials shallow spherical shells", Compos. Struct., 79(3), 338-343. https://doi.org/10.1016/j.compstruct.2006.01.012
- Goyal, V.K. and Kapania, R.K. (2008), "Dynamic stability of laminated beams subjected to non-conservative loading", Thin-Wall. Struct., 46(12), 1359-1369. https://doi.org/10.1016/j.tws.2008.03.014
- Hibbitt, H.D. (1979), "Some follower forces and load stiffness", Int. J. Numer. Methods Eng., 14(6), 207-231.
- Iwata, K., Tsukimor, K. and Kubo, F. (1991), "A symmetric loadstiffness matrix for buckling analysis of shell structures under pressure loads", Int. J. Pres. Ves. & Piping, 45(1), 101-120. https://doi.org/10.1016/0308-0161(91)90047-6
- Khayat, M., Poorveis, D., Moradi, S. and Hemmati, M. (2016), "Buckling of thick deep laminated composite shell of revolution under follower forces", Struct. Eng. Mech., Int. J., 58(1), 59-91. https://doi.org/10.12989/sem.2016.58.1.059
- Khayat, M., Poorveis, D. and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., Int. J., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301
- Lanhe, W. (2004), "Thermal buckling of a simply supported moderately thick rectangular FGM plate", Compos. Struct., 64(2), 211-218. https://doi.org/10.1016/j.compstruct.2003.08.004
- Loganathan, K., Chan, S.C., Gallagher, R.H. and Abel, J.F. (1979), "Finite element representation and pressure stiffness in shell stability analysis", Int. J. Numer. Methods Eng., 14(9), 1413-1429. https://doi.org/10.1002/nme.1620140912
- Na, K.S. and Kim, J.H. (2004), "Three-dimensional thermal buckling analysis of functionally graded materials", Compos.: Part B, 35(5), 429-437. https://doi.org/10.1016/j.compositesb.2003.11.013
- Poorveis, D. and Kabir, M.Z. (2006), "Buckling of discretely stringer-stiffened composite cylindrical shells under combined axial compression and external pressure", Scientia Iranica, 13(2), 113-123.
- Rasheedat, M.M. and Akinlabi, E.T. (2012), "Functionally Graded Material: An overview", Proceedings of the World Congress on Engineering, London, UK, July.
- Reddy, J.N. and Chin, C.D. (2007), "Thermo mechanical analysis of functionally graded cylinders and plates", J. Therm. Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165
- Sanders, J.L. (1963), "Nonlinear theories for thin shells", Quarterly J. Appl. Math, 21(1), 21-36. https://doi.org/10.1090/qam/147023
- Santos, H., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2008), "A semi-analytical finite element model for the analysis of cylindrical shells made of functionally graded materials under thermal shock", Compos. Struct., 86(1-3), 10-21. https://doi.org/10.1016/j.compstruct.2008.03.004
- Schweizerhof, K. and Ramm, E. (1984), "Displacement dependent pressure loads in nonlinear finite element analysis", Comput. Struct., 18(6), 1099-1114. https://doi.org/10.1016/0045-7949(84)90154-8
- Shen, H.S. (2002), "Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments", Compos. Sci. Technol., 62(7-8), 977-998. https://doi.org/10.1016/S0266-3538(02)00029-5
- Sofiyev, A.H. (2010), "The buckling of FGM truncated conical shells subjected to combined axial tension and hydrostatic pressure", Compos. Struct., 92(2), 488-498. https://doi.org/10.1016/j.compstruct.2009.08.033
- Torki, M.E., Kazemi, M.T., Haddadpour, H. and Mahmoudkhani, S. (2014), "Dynamic stability of cantilevered functionally graded cylindrical shells under axial follower forces", Thin-Wall. Struct., 79, 138-146. https://doi.org/10.1016/j.tws.2013.12.005
- Tornabene, F. (2011) "2-D GDQ solution for free vibrations of anisotropic doubly-curved shells and panels of revolution", Compos. Struct., 93(7), 1854-1876. https://doi.org/10.1016/j.compstruct.2011.02.006
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly curved shells made of functionally graded materials using higher order equivalent single later theories", Compos.: Part B, 67, 490-509. https://doi.org/10.1016/j.compositesb.2014.08.012
- Zhang, Y., Huang, H. and Han, Q. (2015), "Buckling of elastoplastic functionally graded cylindrical shells under combined compression and pressure", Compos.-Part B, 69, 120-126. https://doi.org/10.1016/j.compositesb.2014.09.024
- Zuo, Q.H. and Schreyer, H.L. (1996), "Flutter and divergence instability of nonconservative beams and plates", Int. J. Solids Struct., 33(9), 1355-1367. https://doi.org/10.1016/0020-7683(95)00097-6
- Viola, E., Rossetti, L., Fantuzzi, N. and Tornabene, F. (2016), "Generalized stress-strain recovery formulation applied to functionally graded spherical shells and panels under static loading", Compos. Struct., 156, 145-164. DOI: 10.1016/j.compstruct.2015.12.060
- Wang, Q. (2003), "On complex flutter and buckling analysis of a beam structure subjected to static follower force", Struct. Eng. Mech., Int. J., 16(5), 533-556. https://doi.org/10.1296/SEM2003.16.05.02
Cited by
- Evaluation of stress intensity factors in functionally graded materials by natural element method vol.33, pp.1, 2019, https://doi.org/10.1007/s12206-018-1229-y
- Multi-objective optimization of tapered tubes for crashworthiness by surrogate methodologies vol.27, pp.4, 2017, https://doi.org/10.12989/scs.2018.27.4.427
- Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element vol.28, pp.3, 2017, https://doi.org/10.12989/scs.2018.28.3.389
- Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method vol.28, pp.6, 2017, https://doi.org/10.12989/scs.2018.28.6.735
- A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations vol.30, pp.1, 2017, https://doi.org/10.12989/scs.2019.30.1.013
- Deflection of axially functionally graded rectangular plates by Green's function method vol.30, pp.1, 2019, https://doi.org/10.12989/scs.2019.30.1.057
- Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load vol.31, pp.3, 2019, https://doi.org/10.12989/scs.2019.31.3.243
- Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.077
- The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047