DOI QR코드

DOI QR Code

Design of a Plasmonic Switch Using Ultrathin Chalcogenide Phase-change Material

  • Lee, Seung-Yeol (Integrated plasmonics and optical device laboratory, Kyungpook National University)
  • 투고 : 2016.12.20
  • 심사 : 2017.02.06
  • 발행 : 2017.06.25

초록

A compact plasmonic switching scheme, based on the phase change of a thin-film chalcogenide material ($Ge_2Sb_2Te_5$), is proposed and numerically investigated at optical-communication wavelengths. Surface plasmon polariton modal analysis is conducted for various thicknesses of dielectric and phase-change material layers, and the optimized condition is induced by finding the region of interest that shows a high extinction ratio of surface plasmon polariton modes before and after the phase transition. Full electromagnetic simulations show that multiple reflections inside the active region may conditionally increase the overall efficiency of the on/off ratio at a specific length of the active region. However, it is shown that the optimized geometrical condition, which shows generally large on/off ratio for any length of active region, can be distinguished by observing the multiple-reflection characteristic inside the active region. The proposed scheme shows an on/off switching ratio greater than 30 dB for a length of a few micrometers, which can be potentially applied to integrated active plasmonic systems.

키워드

참고문헌

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). https://doi.org/10.1038/nature01937
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). https://doi.org/10.1038/35570
  3. B. Lee, S. Kim, H. Kim, and Y. Lim, "The use of plasmonics in light beaming and focusing," Prog. Quant. Electron. 34, 47-87 (2010). https://doi.org/10.1016/j.pquantelec.2009.08.002
  4. S.-Y. Lee, J. Park, I. Woo, N. Park, and B. Lee, "Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap," Appl. Phys. Lett. 97, 133113 (2010). https://doi.org/10.1063/1.3496012
  5. S.-Y. Lee, J. Park, M. Kang, and B. Lee, "Highly efficient plasmonic interconnector based on the asymmetric junction between metal-dielectric-metal and dielectric slab waveguides," Opt. Express 19, 9562-9574 (2011). https://doi.org/10.1364/OE.19.009562
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). https://doi.org/10.1038/nature04594
  7. M. Z. Alam, J. Niklas Caspers, J. S. Aitchison, and M. Mojahedi, "Compact low loss and broadband hybrid plasmonic directional coupler," Opt. Express 21, 16029-16034 (2013). https://doi.org/10.1364/OE.21.016029
  8. R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, "A nonvolatile plasmonic switch employing photochromic molecules," Nano Lett. 8, 1506-1510 (2008). https://doi.org/10.1021/nl0808839
  9. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, "Polarization-controlled tunable directional coupling of surface plasmon polaritons," Science 340, 331-334 (2013). https://doi.org/10.1126/science.1233746
  10. S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, "Plasmonic meta-slit: shaping and controlling near-field focus," Optica 2, 6-13 (2015). https://doi.org/10.1364/OPTICA.2.000006
  11. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal1, and X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009). https://doi.org/10.1038/nature08364
  12. T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, "Ultrafast plasmonic nanowire lasers near the surface plasmon frequency," Nature Physics 10, 870-876 (2014). https://doi.org/10.1038/nphys3103
  13. K.F. MacDonald and N.I. Zheludev, "Active plasmonics: current status," Laser Photon. Rev. 4, 562-567 (2010).
  14. A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, "Active control of surface plasmon-polariton waves," J. Opt. A: Pure Appl. Opt. 7, S85-S89 (2005). https://doi.org/10.1088/1464-4258/7/2/011
  15. S. Roh, T. Chung, and B. Lee, "Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors," Sensors 11, 1565-1588 (2011). https://doi.org/10.3390/s110201565
  16. D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photon. 1, 402-406 (2007). https://doi.org/10.1038/nphoton.2007.95
  17. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, "Ultrafast active plasmonics," Nat. Photon. 3, 55-58 (2009). https://doi.org/10.1038/nphoton.2008.249
  18. Y. W. Huang, H. W. Lee, R. Sokhoyan, K. Thyagarajan, R. Pala, S. Han, D. P. Tsai, and H. A. Atwater, "Gate-tunable conducting oxide metasurfaces," Nano Lett. 16, 5319-5325 (2016). https://doi.org/10.1021/acs.nanolett.6b00555
  19. H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, "Nanoscale conducting oxide plasMOStor," Nano Lett. 14, 6463-6468 (2014). https://doi.org/10.1021/nl502998z
  20. M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q-H. Park, K. Ahn, and D.-S. Kim, "Active terahertz nano-antennas based on VO2 phase transition," Nano Lett. 10, 2064-2068 (2010). https://doi.org/10.1021/nl1002153
  21. K. Appavoo and R. F. Haglund, "Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial," Nano Lett. 11, 1025-1031 (2011). https://doi.org/10.1021/nl103842v
  22. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phase-change mechanism of rewritable optical media," Nat. Material 3, 703-708 (2004). https://doi.org/10.1038/nmat1215
  23. P. Hosseini, C. D. Wright, and H. Bhaskaran, "An optoelectronic framework enabled by low-dimensional phase-change film," Nature 511, 206-211 (2014). https://doi.org/10.1038/nature13487
  24. A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, "A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability," Advanced Material 27, 4597-4603 (2015). https://doi.org/10.1002/adma.201502023
  25. C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. HP. Pernice, "Integrated all-photonic non-volatile multi-level memory," Nature Photon. 9, 725-733 (2015). https://doi.org/10.1038/nphoton.2015.182
  26. B. Ma, P. Zhang, H. Wang, T. Zhang, J. Zeng, Q. Zhang, G. Wang, P. Xu, W. Zhang, and S. Dai, "Photonic-crystal switch divider based on $Ge_2Sb_2Te_5$ thin films," Appl. Opt. 55, 9205-9210 (2016). https://doi.org/10.1364/AO.55.009205
  27. Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, "Optically reconfigurable metasurfaces and photonic devices based on phase change materials," Nat. Photon. 10, 60-65 (2016). https://doi.org/10.1038/nphoton.2015.247
  28. S.-Y. Lee, Y.-H. Kim, S.-M Cho, G. H. Kim, T.-Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C.-Y. Hwang, and C.-S. Hwang, "Holographic image generation with a thin-film resonance caused by chalcogenide phase-change material," Sci. Rep. doi: 10.1038/srep41152 (2017).
  29. C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, "Active dielectric metasurface based on phase-change medium," Laser Photon. Rev. doi: 10.1002/lpor.201600106 (2016).
  30. J.-W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y.-S. Kang, T.-Y. Lee, and Y. H. Khan, "Optical properties of pseudo binary GeTe, $Ge_2Sb_2Te_5,\,GeSb_2Te_4,\,GeSb_4Te_7,\,and\,Sb_2Te_3$ from ellipsometry and density functional theory," Phys. Rev. B 80, 115209 (2009). https://doi.org/10.1103/PhysRevB.80.115209
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1991).
  32. J. Park, K.-Y. Kim, I.-M. Lee, and B. Lee, "Complete tunneling through the surface mode in a metal-insulator-metal waveguide," J. Korean Phys. Soc. 66, 929-934 (2015). https://doi.org/10.3938/jkps.66.929
  33. H. Kim, I.-M. Lee, and B. Lee, "Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis," J. Opt. Soc. Am. A 24, 2313-2327 (2007). https://doi.org/10.1364/JOSAA.24.002313
  34. H. Kim, J. Park, and B. Lee, Fourier modal method and its application in computational nanophotonics, (CRC Press, New York, 2012).
  35. S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, and B. Lee, "Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons," Phys. Rev. Lett. 108, article 213907 (2012).
  36. S. Roh, T. Chung, and B. Lee, "Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors," Sensors 11, 1565-1588 (2011). https://doi.org/10.3390/s110201565