논문 2017-54-6-2

홀로그래픽 데이터 저장장치에서 트렐리스 인코딩을 이용한 4-레벨 4/6 변조부호

(4-Level 4/6 Modulation Code with Trellis Encoding on Holographic Data Storage)

정 성 권*, 이 재 진**

(Seongkwon Jeong and Jaejin Lee[©])

요 약

멀티레벨 홀로그래픽 데이터 저장장치는 성능을 저하시키는 요소인 2차원 인접 심볼간 간섭을 피하기 위해 변조부호가 요 구된다. 변조부호는 주변의 가장 큰 심볼과 가장 작은 심볼에 의해 발생되는 심각한 ISI 패턴을 제거할 수 있다. 본 논문에서 는 4-레벨 홀로그래픽 데이터 저장장치를 위한 4/6 변조부호를 제안하며 또한 트렐리스 인코딩 방식을 이용하여 오류정정능력 을 갖는 변조부호를 제안한다. 제안하는 4/6 변조부호는 가장 작은 심볼인 '0'과 가장 큰 심볼인 '3'이 어느 방향에서도 인접하 지 않도록 한다. 또한 4-레벨 홀로그래픽 데이터 저장장치에서 같은 코드율을 갖는 변조부호들과 성능 비교를 한다.

Abstract

Multi-level holographic data storage requires modulation codes for avoiding two dimensional inter-symbol interference (2D-ISI). Modulation codes can remove the fatal ISI pattern of neighboring the largest and the smallest symbols. In this paper, we propose a 4-level 4/6 modulation code and its trellis encoding for error correction. The proposed 4/6 modulation code grevents that the symbol 0 and 3 are not adjacent in any direction. Also, we compare the proposed modulation code with the same code rate modulation codes for four-level holographic data storage.

Keywords: holographic data storage, multi-level, modulation code, trellis encoding

I.서 론

홀로그래픽 데이터 저장장치(holographic data storage, HDS)는 홀로그래픽 체적에 페이지 단위로 저장 및 읽 기를 하는 광 저장장치 이다. 따라서 기존의 표면에 데 이터를 기록하는 CD, DVD, Blu-ray 등의 광 저장장치,

* 학생회원, 숭실대학교 정보통신소재융합학과

(Department of ICMC convergence technology, Soongsil University)

Received ; March 13, 2017 Revised ; March 15, 2017 Accepted ; May 15, 2017 하드디스크(hard disk, HDD)와는 다르게 여러 페이지 를 겹쳐서 저장하기 때문에 향상된 저장 용량을 제공할 수 있다. 이러한 이유로 인터넷의 발전과 증가하는 데 이터들을 저장하기 위한 차세대 저장장치로서 주목받고 있다^[1]. 하지만 데이터를 2차원 단위로 저장하기 때문에 기존의 저장장치에서 발생되는 1차원적인 인접 심볼간 간섭(intersymbol interference, ISI)이 아닌 2차원 ISI가 발생하며 하나의 체적에 페이지 단위로 저장하기 때문 에 인접 페이지간 간섭(interpage interference, IPI)가 발생한다^[2-3]. 따라서 이러한 문제를 해결하기 위해 다 양한 오류정정부호 및 변조부호가 제안되고 있다^[4-6]. 멀티레벨 HDS는 하나의 픽셀이 1bit 이상의 데이터를 저 장할 수 있다^[7~8]. 예를 들어 4-레벨 HDS에서는 하나의 픽셀이 표현할 수 있는 심볼은 4가지이기 때문에 하나의

^{**} 정회원, 숭실대학교 전자정보공학부 (School of Electronics Engineering, Soongsil University)

[©] Corresponding Author (E-mail : zlee@ssu.ac.kr)

[※] 이 논문은 2016년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2016R1A2B4011270)

증가시킬 수 있다. 하지만 4-레벨로 저장할 경우에는 블 러(blur) 현상이 심해지기 때문에 멀티레벨에서 발생되는 2차원 ISI를 줄이기 위한 변조부호가 필요하며 이를 위한 연구가 발표되고 있다^[9~11].

본 논문에서는 4-레벨 HDS에서 트렐리스 인코딩을 이용한 4/6 변조부호 방식을 제안한다. 제안하는 변조 코드는 그림 1과 같이 4-레벨 HDS 시스템에서 심각한 ISI를 발생시키는 상황인 가장 큰 심볼인 '3'과 가장 작 은 심볼인 '0'이 인접하지 않도록 하여 2차원 ISI 간섭 을 줄인다. 또한 트렐리스 구조를 이용하여 오류정정능 력을 갖는 변조부호를 제안한다. 변조 부호에 트렐리스 구조를 사용하여 부호화 한다면 부호 이득을 얻을 수 있는 변조부호를 만들 수 있다. 이는 기존의 변조부호 보다 성능을 향상시킬 수 있다.

Ⅱ. 4-레벨 4/6 변조부호

4-레벨 HDS는 하나의 픽셀이 표현할 수 있는 심볼 의 개수가 4개이므로 하나의 픽셀당 2비트를 저장할 수 있다. 2비트 (00, 01, 10, 11)가 발생하면 하나의 심볼(0, 1, 2, 3)으로 표현한다. 그림 2는 제안하는 변조부호의 코드워드 구조를 보여준다. 8비트가 발생하면, 즉 4개의 입력심볼(i0, i1, i2, i3)이 발생하면 4개의 입력심볼은 3×2 구조의 6개의 심볼 형태의 코드워드로 변조된다. 이때 C₀, C₃, C₄ 픽셀은 심볼 값 (1, 2)만 가질 수 있으며, C₁, C2, C5는 심볼 값 (0, 1, 2, 3)을 가질 수 있다. 하지만 그림 3의 (a)를 보면 변조부호들 간의 배열을 통해 C₅ 와 C1이 이웃하게 되는 상황이 발생하게 된다. 이는 심 각한 2차원 ISI를 발생시킬 수 있다. 예를 들어 C₅가 가 장 큰 심볼인 '3'을 나타내고 C1이 가장 작은 심볼인 '0' 혹은 C5가 가장 작은 심볼인 '0'을 나타내고 C1이 가장 큰 심볼인 '3'을 나타낸다면 가장 최악의 ISI 상황을 나 타낸다. 따라서 이러한 상황을 피하기 위해 그림 3의 (b)와 같이 홀수라인과 짝수라인을 통해 변조부호의 순 서를 바꿔준다. 즉 홀수라인에서는 코드워드의 순서가 C₀, C₁, C₂, C₃, C₄, C₅ 의 순서라면 짝수라인의 코드워드 의 순서는 C1, C0, C3, C2, C5, C4 순서로 변환한다. 이러 한 방식을 사용하면 C₅와 C₁이 만나는 상황인 가장 심 각한 2차원 인접 심볼간 간섭을 피할 수 있다. 표 1은 제안하는 4/6 변조부호의 코드워드를 보여준다. 가능한 코드워드의 총 개수인 4096개(=4⁶개)의 코드워드 중에 서 그림 2의 조건인 Co, Ca, C4는 심볼 값 (1, 2), C1, C2, C5는 심볼 값 (0, 1, 2, 3)을 가질 수 있도록 하는 코드 워드 256개(=4⁴개)를 선택하였으며 선택된 코드워드들 간의 최소거리(minimum distance) d_{min}은 2이다. 제안하는 변조부호의 코드율(code rate)는 4/6=0.66이며, 한 픽셀당 1.33bits(8bit/6pixel) 저장이 가능하다.

- 그림 1. 4-레벨 HDS에서 심각한 2차원 ISI의 예제
- Fig. 1. Example of fatal two-dimentional ISI in 4-level HDS.

- 그림 2. 제안하는 변조방식의 배열 방식
- Fig. 2. Arrangement of the proposed modulation method.

그림 3. 제안하는 변조부호의 구성

Fig. 3. Composition of proposed modulation code.

Table1.	Code	word of 4-leve	el 4/6 mo	dulatioi	n code.						
입력심복		코드워드	입력심복		코드워드	입력심봌		코드워드	입력심봌		코드워드
0000	0	100110	1000	64	120110	2000	128	220111	3000	102	200111
0000	0	100110	1000	04	120110	2000	120	220111	2000	102	200111
0001	1	100112	1001	65	120112		129	220113	3001	193	200113
0002	2	100121	1002	66	120121	2002	130	220120	3002	194	200120
0003	3	100123	1003	67	120123	2003	131	220122	3003	195	200122
0010	4	100211	1010	68	120211	2010	132	220210	3010	196	200210
0011	5	100213	1011	69	120213	2011	133	220212	3011	197	200212
0011	6	100210	1011	70	120210	2011	124	220212	2012	100	200212
0012	0	100220	1012	70	120220	2012	104	220221	0012	190	200221
0013	1	100222	1013	71	120222	2013	135	220223	3013	199	200223
0020	8	101111	1020	72	121111	2020	136	221110	3020	200	201110
0021	9	101113	1021	73	121113	2021	137	221112	3021	201	201112
0022	10	101120	1022	7/	121120	2022	138	221121	3022	202	201121
0022	11	101120	1022	75	121120	2022	130	221121	3023	202	201121
0025	10	101122	1025	75	121122	2023	1.40	001011	2020	203	201125
0030	12	101210	1030	76	121210	2030	140	221211	3030	204	201211
0031	13	101212	1031	77	121212	2031	141	221213	3031	205	201213
0032	14	101221	1032	78	121221	2032	142	221220	3032	206	201220
0033	15	101223	1033	79	121223	2033	143	221222	3033	207	201222
0100	16	101220	1100	80	121220	2100	1//	222111	3100	208	202111
0100	10	102110	1100	00	122110	2100	145	000110	2101	200	202111
0101	17	102112	1101	81	122112	2101	140	222113	3101	209	202113
0102	18	102121	1102	82	122121	2102	146	222120	3102	210	202120
0103	19	102123	1103	83	122123	2103	147	222122	3103	211	202122
0110	20	102211	1110	84	122211	2110	148	222210	3110	212	202210
0111	21	102213	1111	85	122213	2111	149	222212	3111	213	202212
0112	21	102210	1111	00 96	122210	2111	150	222212	2112	210	202212
0112		102220	1112	00	122220	2112	150	222221	0110	214	202221
0113	23	102222	1113	87	122222	2113	151	22223	3113	215	202223
0120	24	103111	1120	88	123111	2120	152	223110	3120	216	203110
0121	25	103113	1121	89	123113	2121	153	223112	3121	217	203112
0122	26	103120	1122	90	123120	2122	154	223121	3122	218	203121
0123	27	103122	1123	Q1	123122	2123	155	223123	3123	219	203123
0120	21	100122	1120	02	120122	2120	156	000120	2120	210	200120
0130	20	105210	1150	92	123210	2150	150	223211	0101	220	205211
0131	- 29	103212	1131	93	123212	2131	157	223213	3131	221	203213
0132	- 30	103221	1132	94	123221	2132	158	223220	3132	222	203220
0133	31	103223	1133	95	123223	2133	159	223222	3133	223	203222
0200	32	110111	1200	96	130111	2200	160	230110	3200	224	210110
0200	33	110113	1200	07	130113	2201	161	230112	3201	225	210112
0201	24	110110	1201	00	120120	2201	162	200112	2201	220	210112
0202	34	110120	1202	98	130120		102	250121	3202	220	210121
0203	35	110122	1203	99	130122	2203	163	230123	3203	227	210123
0210	36	110210	1210	100	130210	2210	164	230211	3210	228	210211
0211	37	110212	1211	101	130212	2211	165	230213	3211	229	210213
0212	38	110221	1212	102	130221	2212	166	230220	3212	230	210220
0212	20	110221	1212	102	120222	2212	167	230222	3213	221	210220
0213	40	110220	1213	103	100220	2210	107	001111	20210	201	011111
0220	40	111110	1220	104	131110		168	231111	3220	232	211111
0221	41	111112	1221	105	131112	2221	169	231113	3221	233	211113
0222	42	111121	1222	106	131121	2222	170	231120	3222	234	211120
0223	43	111123	1223	107	131123	2223	171	231122	3223	235	211122
0230	44	111211	1230	108	131211	2230	172	231210	3230	236	211210
0220	15	111919	1921	100	121212	2200	172	231210	3220	200	211210
0201	40	111210	1201	110	191990	0000	174	021012	20201	201	911991
0232	40	111220	1232	110	131220		1/4	201220	3232	238	211221
0233	47	111222	1233	111	131222	2233	175	231223	3233	239	211223
0300	48	112111	1300	112	132111	_2300	176	232110	3300	240	212110
0301	49	112113	1301	113	132113	2301	177	232112	3301	241	212112
0302	50	112120	1302	114	132120	2302	178	232121	3302	242	212121
0302	51	112120	1202	115	199199	2202	170	202121	2202	2/2	212121
0305	51	112122	1010	110	102122	2000	100	202120	0010	240	010011
0310	52	112210	1310	116	132210	2310	180	232211	3310	244	212211
0311	53	112212	1311	117	132212	2311	181	232213	3311	245	212213
0312	54	112221	1312	118	132221	2312	182	232220	3312	246	212220
0313	55	112223	1313	119	132223	2313	183	232222	3313	247	212222
0320	56	113110	1320	120	133110	2320	184	233111	3320	248	213111
0020	50	110110	1020	101	100110	0001	104	000111	2201	240	919119
0022	51	113112	1321	121	100101		100	200110	0021	249	213113
0322	58	113121	1322	122	133121	2322	186	233120	3322	250	213120
0323	59	113123	1323	<u>12</u> 3	133123	2323	187	233122	3323	251	213122
0330	60	113211	1330	124	133211	2330	188	233210	3330	252	213210
0331	61	113213	1331	125	133213	2331	189	233212	3331	253	213212
0555	62	112220	1322	120	133990	2001	100	2322212	3330	255	210212
0000	02	110220	1002	120	100220	2002	101	200221	<u> </u>	204	213221
0333	63	113222	1333	127	133222	2333	191	233223	3333	255	213223

이러시보		ㅋㄷ의ㄷ	이러시보		ㅋㄷ이ㄷ		
2000	128	220111	3000	102	200111		
2000	120	220111	3001	192	200111		
2001	120	220113	3002	10/	200113		
2002	130	220120	3002	105	200120		
2003	131	220122	3010	106	200122		
2010	132	220210	2011	190	200210		
2011	124	220212	2012	102	200212		
2012	104	220221	2012	190	200221		
2013	100	220225	2020	200	200225		
2020	130	221110	- <u>3020</u> - 2021	200	201110		
2021	107	221112	2021	201	201112		
2022	100	221121	2022	202	201121		
2023	139	221120	3023	205	201125		
2030	140	221211		204	201211		
2031	141	221213	2022	200	201213		
2052	142	221220	- 3032 - 2022	200	201220		
2033	143	221222	3033	207	201222		
2100	144	222111	3100	208	202111		
2101	145	222113	3101	209	202113		
2102	140	222120	3102	210	202120		
2103	147	222122	3103	211	202122		
2110	148	222210	3110	212	202210		
2111	149	222212	3111	213	202212		
2112	150	222221	3112	214	202221		
2113	151	222223	3113	215	202223		
2120	152	223110	3120	216	203110		
2121	153	223112	3121	217	203112		
2122	154	223121	3122	218	203121		
2123	155	223123	3123	219	203123		
	156	223211	3130	220	203211		
2131	157	223213	3131	221	203213		
2132	158	223220	3132	222	203220		
2133	159	223222	3133	223	203222		
2200	160	230110	3200	224	210110		
2201	161	230112	3201	225	210112		
2202	162	230121	3202	226	210121		
2203	163	230123	3203	227	210123		
2210	164	230211	3210	228	210211		
2211	165	230213	3211	229	210213		
2212	166	230220	3212	230	210220		
2213	167	230222	3213	231	210222		
2220	168	231111	3220	232	211111		
2221	169	231113	3221	233	211113		
2222	170	231120	3222	234	211120		
2223	171	231122	3223	235	211122		
2230	172	231210	3230	236	211210		
2231	173	231212	3231	237	211212		
2232	174	231221	3232	238	211221		
2233	175	231223	3233	239	211223		
2300	176	232110	3300	240	212110		
2301	177	232112	3301	241	212112		
2302	178	232121	3302	242	212121		
2303	179	232123	3303	243	212123		
2310	180	232211	3310	244	212211		
2311	181	232213	3311	245	212213		
2312	182	232220	3312	246	212220		
2313	183	232222	3313	247	212222		
2320	184	233111	3320	248	213111		
2321	185	233113	3321	249	213113		
2322	186	233120	3322	250	213120		
2323	187	233122	3323	251	213122		
2330	188	233210	3330	252	213210		
2331	189	233212	3331	253	213212		
2332	190	233221	3332	254	213221		

1. 일대일 매핑 방식

일대일 매핑(mapping) 방식은 4개의 심볼을 6개의 3×2 구조의 코드워드로 일대일 변조하는 방식이다. 예 를 들어 입력 4개의 픽셀값이 0000이라면 변조된 6개의 픽셀값인 100110으로 일대일 매핑을 통해 변조하는 방 식이다.

2. 128개의 상태를 갖는 트렐리스 인코딩 방식

그림 4는 128개의 상태(state)를 갖는 트렐리스 인코 딩 방식을 보여준다. 그림을 보면 첫 번째 상태(state 0) 에는 (0, 128), (1, 129), ..., (127,255)의 128개의 가지 (branch)를 갖는 첫 번째 상태부터 (127, 255), (0, 128), ..., (126, 254)의 128개의 가지를 갖는 127번째 상태까지 총 128개의 상태가 있다. 그림 5는 각각의 가지들에 대 한 심볼 할당 방법의 예제를 보여준다. 괄호 안에 적혀 있는 두 개의 숫자들은 하나의 가지에 대응되는 값이 다. 다시 말해 하나의 가지가 두 개의 대응값을 가지고 있으며, 총 256개의 코드워드를 2개씩 하나의 가지에 할당하였기 때문에 128개의 상태가 나온다. 이러한 트 렐리스 구조를 사용하면 입력값에 따라서 상태가 변화 하고, 출력값도 변한다. 예를 들어 0번째 상태에서 '0000'의 입력 심볼값이 들어오면 출력값으로 첫 번째 괄호의 첫 번째 심볼값인 0번째 코드워드의 값 '100110' 를 출력하고 0번째 상태로 이동한다. 0번째 상태에서 입력값으로 '0001'이 들어오면 출력값으로 첫 번째 괄호 의 두 번째 심볼값인 128번째 코드워드의 값 '220111'를 출력하고 0번째 상태로 이동한다. 본 변조부호는 k번째 상태에서 할당된 심볼 값은 (k, k+128), (k+1, k+129), (k+2, k+130), ..., (127, 255), (0, 128), ..., (k-1, k+127)과 같다. 해당 변조부호 방식은 부호 이득을 얻기 위해 m 간격마다 0번째 상태로 돌아가는 종료 심볼을 삽입해야 한다. 따라서 실제 부호율은 4m/6(m+1) 이다. 해당 변 조부호의 절차는 초기의 상태를 0으로 한 후, 4개의 심 볼을 입력받아 현재 상태와 입력 심볼에 알맞은 심볼값 을 출력한다. 이후에 해당하는 상태로 옮긴 다음 이러 한 과정을 반복하며 마지막 m번째에 0번째 상태로 가 기위해 상태 초기화 패리티 심볼을 삽입한다. 해당 변 조부호의 최소거리는 dmin=2 이기 때문에 1bit의 오류정 정은 불가능하지만 오류가 틀린 정보는 검출이 가능하 기 때문에 부호 이득을 얻을 수 있다.

해당 변조 부호의 복호방식은 유클리디안 거리(Euclidean Distance)를 이용한 비터비 알고리즘(Viterbi algorithm) 을 사용하였으며 오류값은 아래와 같다.

$$\Delta_i(s_c, s_n) = \sum_{j=1}^6 [z_{ji} - u_{ji}^{(k)}(s_c)]^2 \tag{1}$$

여기서 s_c 는 현재 상태(current state), s_n 은 다음 상 태(next state), z_{ji} 는 *i*번째의 수신 코드워드에서 *j*번째 심볼값이다. $u_{ji}^{(k)}$ 는 *k*번째 현재 송신 가능한 코드워드 들 중에서 *i*번째 가지의 *j*번째 코드워드의 심볼이다. 각 상태는, 256개의 거리차들 중에 가장 작은 거리차를 선 택한 후 가장 작은 거리차가 아닌 값들은 지워간다. m 번째에서는 초기화를 하였기 때문에 현재 상태가 0번째 상태이며, 이 때 거리값이 가장 작은 길을 선택하여 해 당 길에 대응되는 값을 선택한다.

그림 5. 가지들에 대한 심볼 할당 방법

Fig. 5. Assignment of an output symbol for each corresponding branch.

 256개의 상태를 갖는 트렐리스 인코딩 방식 256개의 상태를 갖는 트렐리스 인코딩 방식은 128개
의 상태를 갖는 트렐리스 인코딩 방식과 유사하다. 256 개의 상태에서 각각 하나의 값만 존재한다. 부호화 및 복호화 방식은 앞의 방식과 동일하다. 그러나 일대일 매핑 방식은 m의 길이와 관계가 없지만 128개와 256개
의 상태를 갖는 인코딩 방식은 m의 길이에 따라 초기 화를 시켜주는 패리티 심볼을 갖는다.

Ⅲ.실 험

홀로그래픽 채널은 CCD (charge-coupled device)를 통과한 형상을 이용하여 모델링 하였다^[12]. 채널의 잡음 환경은 신호대잡음비 (signal to noise ratio, SNR)에 따 라 실험하였으며, 이때 SNR은 10log₁₀ (1/σ²)로 정의 하였다. 여기서 σ²는 부가 백색 가우시안 (additive white Gaussian noise, AWGN)전력이다. 정확한 신호검출을 위해 부분 응답 최대 유사도 (partial response maximum response, PRML)를 이용하였으며 이 때 PR target은 가로방향, 세로방향 모두 PR(131)을 사용하였다. 최대 유사도 검출기는 연판정 출력 비터비 알고리즘(soft output Viterbi algorithm, SOVA)을 사용하였다.실험은 한 페이지의 크기가 1024×1024이며, 1000 페이지에 대 하여 실험하였다. 제안하는 변조부호의 성능을 비교하 기 위해 같은 코드율을 갖는 변조부호인 2/3 변조부호 와 6/9 변조부호와 비교하였다^[9-10].

그림 6은 m=30 일 때 SNR에 따른 BER 성능을 보여 준다. 제안하는 4/6 일대일 매핑 변조부호는 기존의 2/3 및 6/9 변조부호보다 BER이 10⁻⁵ 일 때, 약 4.5dB 성능 향상을 보였다. 또한 128개와 256개의 상태를 갖는 트 렐리스 인코딩 방식은 기존의 변조부호보다 뛰어난 성 능을 보여주었다. 그림 7은 m=100일 때 SNR에 따른 BER 성능을 보여준다. 128개와 256개의 상태를 갖는 트렐리스 인코딩 방식은 SNR이 12dB 이하일 때는 일 대일 매핑 방식보다 성능이 좋지 못하지만 SNR이 13dB부터는 모든 오류를 정정할 수 있었다. 그림 8은 m=500일 때 SNR에 따른 BER 성능을 보여준다. 128개 와 256개의 상태를 갖는 트렐리스 인코딩 방식은 SNR 이 8dB에서 10dB일 때 성능 향상이 거의 없었다. 이러 한 이유는 m의 길이가 길어졌기 때문에 비터비의 오류 전파에 의해 오류 정정이 올바르게 되지 못하였다. 그 러나 11dB 이상부터는 급격하게 성능을 향상 시킬 수 있다.

Fig. 6. At m=30, BER performance depending on SNR.

그림 7. m=100일 때 SNR에 따른 BER 성능 Fig. 7. At m=100, BER performance depending on SNR.

Ⅳ.결 론

본 논문에서는 홀로그래픽 데이터 저장장치에서 트 렐리스 인코딩을 이용한 4-레벨 4/6 변조부호를 제안하 였다. 256개의 코드워드를 통해 일대일 매핑, 128개 및 256개의 상태를 갖는 트렐리스 인코딩 방식을 소개하였 으며 같은 부호율을 갖는 2/3 변조부호와 6/9 변조부호 와의 성능 비교를 보여주었다. 제안하는 변조부호가 기 존의 변조부호보다 성능이 우수한 이유는 코드워드들 간의 거리가 크기 때문이다. 제안하는 변조부호의 최소 거리 dmin이 2지만 부호들 간에 거리가 2 이상인 부호 가 많기 때문에 성능 향상을 얻을 수 있었다. 따라서 HDS를 위한 변조부호를 설계하기 위해 2차원 심볼간 간섭을 줄일 수 있으며 코드워드들 간의 거리를 증가시 킬 수 있다면 급격한 성능 향상을 얻을 수 있다.

또한 트렐리스 인코딩 방식을 이용한 변조부호는 SNR이 14dB 이상부터는 모든 오류를 정정하는 것을 보여주었다. 따라서 SNR이 높은 시스템에서 사용을 한 다면 트렐리스 인코딩 방식을 사용한 변조부호를 사용 하는 것이 성능 이득을 볼 수 있으며, SNR이 낮고 복 잡도를 줄이기 위해서는 일대일 매핑 방식을 사용하는 것이 효율적이다.

REFERENCES

- L. Hesselink, S.S. Orlov, and M.C. Bashaw, "Holographic data storage systems," Proc. IEEE, Vol. 92, no. 8, pp. 1231–1280, August 2004.
- [2] D. E. Pansatiankul and A. A. Sawchuk, "Multi-dimensional modulation codes and error correction for page-oriented optical data storage," Proc. SPIE, Vol. 4342, no. 393, pp. 393–400, January 2002.
- [3] V. Vadde and B. V. K. V. Kumar, "Channel modeling and estimation for intrapage equalization in pixel matched volume holographic data storage," Appl. Opt., Vol. 38, No. 20, pp. 4374–4386, July 1999.
- [4] J. Kim, J. Wee, and J. Lee, "Error correcting 4/6 modulation codes for holographic data storage," Jpn. J. Appl. Phys., vol. 49, no. 8, pp. 08KB04, August 2010.
- [5] J. Kim and J. Lee, "Two-dimensional 5:8 modulation code for holographic data storage," Jpn. J. Appl. Phys., Vol. 48, no. 3, pp. 03A031, March 2009.

- [6] J. Kim and J. Lee, "Partial response maximum likelihood detections using two-dimensional equalizer for holographic data storage," Jpn. J. Appl. Phys., Vol. 48, no. 3, 03A033, 2009.
- [7] S. G. Srinivasa, O. Momtahan, A. Karbaschi, S. W. McLaughlin, A. Adibi, and F. Fekri, "M-ary, binary, and space-volume multiplexing trade-offs for holographic channels," Proc. IEEE Globecom 2006, pp. 1–5, San Francisco, USA, November 2006.
- [8] U. Wachsmann, R. F. H. Fischer, and J.B. Huber, "Multilevel Codes: Theoretical Concepts and Practical Design Rules," IEEE. Trans. Inform. Theory, Vol.45, pp. 1361–1391, July 1999.
- [9] K. Park, B. Kim, and J. Lee, "A 6/9 Four-Ary Modulation Code for Four-Level Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 52, no. 9, pp. 09LE05, September 2013.
- [10] S. Kim and J. Lee, "A Simple 2/3 Modulation Code for Multi-Level Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 52, no. 9, pp. 09LE04, September 2013.
- [11] S. Jeong and J. Lee, "4-level 3/4 modulation code for holographic data storage," Journal of The Institute of Electronics and Information Engineers, Vol. 52, no. 9, pp. 1576–1580, September 2015.
- [12] D. E. Pansatiankul and A. A. Sawchuk, "Multi-dimensional modulation codes and error correction for page-oriented optical data storage," Proc. SPIE, Vol. 4342, pp. 393–400, January 2002.

- 저 자 소 개 —

정 성 권(학생회원) 대한전자공학회 논문지 제53권 10호 참조

이 재 진(정회원) 대한전자공학회 논문지 제53권 10호 참조

(858)