Abstract
A typical approach to visualizing k (${\geq}2$)-group multidimensional data is to use Fisher's canonical discriminant analysis (CDA). CDA finds the best low-dimensional subspace that accommodates k group centroids in the Mahalanobis space. This paper proposes an alternative visualization procedure functioning in the Euclidean space, which finds the primary dimension with maximum discrimination of k group centroids and the secondary dimension with maximum dispersion of all observational units. This hybrid procedure is especially useful when the number of groups k is two.
k (${\geq}2$) 그룹의 p-차원 데이터의 시각화에서 가장 전형적인 방법은 Fisher의 정준판별분석(canonical discriminant analysis; CDA)이다. CDA는 마할라노비스 공간에서 k개 그룹 중심을 근사하게 통과하는 저차원 부공간에 관측점들을 사영한다. 본 논문은 척도화 유클리드 공간에서 다그룹 다차원 데이터를 시각화하는 방법을 제안하는데, 저차원 부공간의 제1축(또는 제1축과 제2축)은 그룹 중심들의 최대변별(maximum discrimination)에서 찾고 부공간의 제2축(또는 제3축)은 관측개체들의 최대산포(maximum dispersion)에서 찾는다. 이러한 혼종방법(hybrid method)은 2-그룹 다차원 자료의 시각화에서 특히 유용하다.