참고문헌
- Banfield, J. D. and Raftery A. E. (1993). Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803-821. https://doi.org/10.2307/2532201
- Bensmail, H., Celeux, G., Raftery, A. E., and Robert, C. P. (1997). Inference in modelbased cluster analysis, Statistics and Computing, 7, 1-10. https://doi.org/10.1023/A:1018510926151
- Bernardo, J. M. and Giro n, F. J. (1988). A Bayesian analysis of simple mixture problems. In Bayesian Statistics 3, Bernardo, J. M., DeGroot, M. H., Lindley, D. V., and Smith, A. F. M. (Eds), Clarendon, New York, 67-78.
- Cao, G. and West, M. (1996). Practical Bayesian inference using mixtures of mixtures, Biometrics, 52, 1334-1341. https://doi.org/10.2307/2532848
- Carlin, B. and Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods, Journal of the Royal Statistical Society Series B (Methodological), 57, 473-484.
- Dasgupta, A. and Raftery, A. E. (1998). Detecting features in spatial point processes with clutter via modelbased clustering, Journal of the American Statistical Association, 93, 294-302. https://doi.org/10.1080/01621459.1998.10474110
- Dellaportas, P. (1998). Bayesian classification of neolithic tools, Applied Statistics, 47, 279-297.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society Series B (Methodological), 39, 1-38.
- De Veaux, R. D. (1989). Mixtures of linear regressions, Journal Computational Statistics & Data Analysis, 8, 227-245. https://doi.org/10.1016/0167-9473(89)90043-1
- Diebolt, J. and Robert, C. (1990). Bayesian estimation of finite mixture distributions, part ii: sampling implementation, Technical Report 111, LSTA, Universite Paris VI, Paris.
- Diebolt, J. and Robert, C. (1994). Estimation of finite mixture distributions through Bayesian sampling, Journal of the Royal Statistical Society Series B (Methodological), 56, 363-375.
- Escobar, M. and West, M. (1995). Bayesian density estimation and inference using mixtures, Journal of the American Statistical Association, 90, 577-588. https://doi.org/10.1080/01621459.1995.10476550
- Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation, Journal of the American Statistical Association, 97, 611-631. https://doi.org/10.1198/016214502760047131
- Fruhwirth-Schnatter, S. (2005). Finite Mixture and Markov Switching Models, Springer Science & Business Media, New York.
- Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian Data Analysis (pp. 526), Chapman and Hall, Boca Raton, FL.
- Geoffery, M. and David, P. (2000). Finite Mixture Models, John Wiley & Sons, New York.
- Hurn, M., Justel, A., and Robert, C. P. (2003). Estimating mixtures of regressions, Journal of Computational and Graphical Statistics, 12, 55-79. https://doi.org/10.1198/1061860031329
- Kyung, M. (2015). Dirichlet process mixtures of linear mixed regressions, Communications for Statistical Applications and Methods, 22, 625-637. https://doi.org/10.5351/CSAM.2015.22.6.625
- McLachlan, G. J. and Basford, K. E. (1988). Mixture Models: Inference and Applications to Clustering, Marcel Dekker, New York.
- McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models, Wiley, New York.
- Mengersen, K. and Robert, C. (1996). Testing for mixtures: a Bayesian entropic approach. In Bayesian Statistics 5, Proceedings of the Fifth Valencia International Meeting, Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M. (Eds), Oxford University Press, Oxford, 255-276.
- Phillips, D. B. and Smith, A. F. M. (1996). Bayesian model comparison via jump diffusions. In Markov Chain Monte Carlo in Practice, Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (Eds), Chapman and Hall, London, 215-239.
- Quandt, R. E. (1958). The estimation of the parameters of a linear regression system obeying two separate regimes, Journal of the American Statistical Association, 53, 873-880. https://doi.org/10.1080/01621459.1958.10501484
- Quandt, R. E. and Ramsey, J. B. (1978). Estimating mixtures of normal distributions and switching regressions, Journal of the American Statistical Association, 73, 730-738. https://doi.org/10.1080/01621459.1978.10480085
- Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalized linear models, Biometrika, 83, 251-266. https://doi.org/10.1093/biomet/83.2.251
- Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion), Journal of the Royal Statistical Society B (Statistical Methodology), 59, 731-792. https://doi.org/10.1111/1467-9868.00095
- Robert, C. P. (1996). Mixtures of distributions: inference and estimation. In Markov Chain Monte Carlo in Practice, Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (Eds), Chapman and Hall, London, 441-464.
- Robert, C. P. and Mengersen, K. L. (1999). Reparameterization issues in mixture modelling and their bearings on MCMC algorithms, Computational Statistics and Data Analysis, 29, 325-343. https://doi.org/10.1016/S0167-9473(98)00058-9
- Roeder, K. and Wasserman, L. (1997). Practical density estimation using mixtures of normals, Journal of the American Statistical Association, 92, 894-902. https://doi.org/10.1080/01621459.1997.10474044
- Scott, A. J. and Symons, M. J. (1971). Clustering methods based on likelihood ratio criteria, Biometrics, 27, 387-389. https://doi.org/10.2307/2529003
- Smith, A. E. M. and Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods, Journal of the Royal Statistical Society Series B (Methodological), 55, 3-23.
- Vounatsou, P., Smith, T., and Smith, A. F. M. (1998). Bayesian analysis of two-component mixture distributions applied to estimating malaria attributable fractions, Applied Statistics, 47, 575-587.
- West, M. (1992). Modelling with mixtures. In Bayesian Statistics 4, Proceedings of the Fourth Valencia International Meeting, Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M. (Eds), Oxford University Press, Oxford, 503-524.
- West, M., Muller, P., and Escobar, M. D. (1994). Hierarchical priors and mixture models with application in regression and density estimation. In Aspects of Uncertainty: A tribute to D.V. Lindley, Smith, A. F. M. and Freeman, P. (Eds), Wiley, New York, 363-386.
- Yu, J. Z. and Tanner, M. A. (1999). An analytical study of several Markov chain Monte Carlo estimators of the marginal likelihood, Journal of Computational and Graphical Statistics, 8, 839-853.