DOI QR코드

DOI QR Code

Forecasting Korean housing price index: application of the independent component analysis

부동산 매매지수와 전세지수 예측: 독립성분분석을 활용한 분석

  • Pak, Ro Jin (Dankook University, Department of Applied Statistics)
  • 박노진 (단국대학교 응용통계학과)
  • Received : 2017.02.03
  • Accepted : 2017.03.06
  • Published : 2017.04.30

Abstract

Real-estate values and related economics are often the first read newspaper category. We are concerned about the opinions of experts on the forecast for real estate prices. The Box-Jenkins ARIMA model is a commonly used statistical method to predict housing prices. In this article, we tried to predict housing prices by combining independent component analysis (ICA) in multivariate data analysis and the Box-Jenkins ARIMA model. The two independent components for both the selling price index and the long-term rental price index were extracted and used to predict the future values of both indices. In conclusion, it has been shown that the actual indices and the forecast indices using ICA are more comparable to the forecasts of the ARIMA model alone.

우리나라 뉴스에서 매일 빠지지 않는 내용은 아마도 부동산 경제에 관한 것이라고 생각된다. 많은 사람들은 부동산 가격의 변동에 관한 전문가들의 예측에 관심을 갖고 있다. 매매가격 혹은 전세가격을 예측하기위해 일반적으로 많이 사용되는 방법은 박스-젠킨스에 기반을 둔 자기회귀이동평균모형이다. 본 논문에서는 자기회귀모형과 다변량 자료분석에서 사용하는 독립성분분석을 결합하여 예측하는 방법을 시도하여 보았다. 매매가격과 전세가격을 두 개의 독립성분으로 재설정하고 독립성분들을 이용하여 예측한 후 역변환을 통해 매매가격과 전세가격을 예측하는 방법을 시도하였다. 그 결과 일반적인 자기회귀이동평균모형을 사용할 때 보다 독립성분을 활용한 예측이 실제 지수에 더 유사한 값들을 얻을 수 있음을 보였다.

Keywords

References

  1. Back, A. and Weigend, A. (1997). A first application of independent component analysis to extracting structure from stock returns, International Journal of Neural Systems, 8, 473-484. https://doi.org/10.1142/S0129065797000458
  2. Cho, Y. (2004). Independent component analysis for clustering analysis components by using kurtosis, The KIPS Transactions: Part B, 4, 429-436.
  3. Comon, P. (1994). Independent component analysis - a new concept?, Signal Processing, 36, 287-314. https://doi.org/10.1016/0165-1684(94)90029-9
  4. Cover, T. and Thomas, J. (1991). Elements of Information Theory, John Wiley & Sons, Hoboken.
  5. Delfosse, N. and Loubaton, P. (1995). Adaptive blind separation of independent sources: a de ation ap- proach, Signal Processing, 45, 59-83. https://doi.org/10.1016/0165-1684(95)00042-C
  6. Garcia-Ferrer, A., Gonzalez-Prieto, E., and Pena, D. (2011). Exploring ICA for time series decomposition, In Working paper 11-16, Statistics and Econometrics Series 11, Universidad Carlos III de Madrid: Getafe.
  7. Hyvarinen, A. (1998a). Independent component analysis in the presence of gaussian noise by maximizing joint likelihood, Neurocomputing, 22, 49-67. https://doi.org/10.1016/S0925-2312(98)00049-6
  8. Hyvarinen, A. (1998b). New Approximation of Differential Entropy for Independent Component Analysis and Projection Pursuit, in Advances in Neural Information Processing Systems, MIT Press, Cambridge.
  9. Hyvarinen, A. and Oja, E. (1997). A fast fixed-point algorithm for independent component analysis, Neural Computation, 9, 1483-1492. https://doi.org/10.1162/neco.1997.9.7.1483
  10. Hwang, J. S. and Kim, J. H. (2011). A study on the estimation of modal parameters using independent component analysis method, Journal of the Architectural Institute of Korea Structure & Construction, 27, 27-35.
  11. Jeon, C. H., Lee, H. S., Park, H. S., and Hong, J. H. (2006). Estimation of pure component fractions in a mixture using independent component analysis. In Proceedings of the Korean Operations and Management Science Society Conference, 753-757.
  12. Jones, M. and Sibson, R. (1987). What is projection pursuit?, Journal of the Royal Statistical Society Series 4, 150, 1-36. https://doi.org/10.2307/2981662
  13. Jutten, C. and Herault, J. (1991). Blind separation of source, part I: an adaptive algorithm based on neuromimetic architecture, Signal Processing, 24, 1-10. https://doi.org/10.1016/0165-1684(91)90079-X
  14. Papoulis, A. (1991). Probability, Random Variables and Stochastic Processes (3rd Ed), McGraw-Hill, New York.
  15. Pham, D. T., Garrat, P., and Jutten, C. (1992). Separation of a mixture of independent sources through a maximum likelihood approach. In Proceedings of EUSIPCO, 771-774.
  16. Shim, Y. S., Choi, S. H., and Lee, I. K. (2001). Eyeball movements removal in EEG by independent component analysis, Korean Journal of Clinical Neurophysiology, 3, 26-30.