Abstract
An influence measure known as Cook's distance has been used for judging the influence of each observation on the least squares estimate of the parameter vector. The distance does not reflect the distributional property of the change in the least squares estimator of the regression coefficients due to case deletions: the distribution has a covariance matrix of rank one and thus it has a support set determined by a line in the multidimensional Euclidean space. As a result, the use of Cook's distance may fail to correctly provide information about influential observations, and we study some reasons for the failure. Three illustrative examples will be provided, in which the use of Cook's distance fails to give the right information about influential observations or it provides the right information about the most influential observation. We will seek some reasons for the wrong or right provision of information.