DOI QR코드

DOI QR Code

Nominal Flexural Strength Considering Strain-hardening Effect of HSB600 Steel for Composite I-girders in Positive Bending

HSB600 강재의 변형-경화를 고려한 강합성 I-거더의 정모멘트부 공칭휨강도

  • Lim, Ji Hoon (Dept. of Civil and Environmental Engineering, Hanyang University) ;
  • Choi, Dong Ho (Dept. of Civil and Environmental Engineering, Hanyang University)
  • 임지훈 (한양대학교, 건설환경공학과) ;
  • 최동호 (한양대학교, 건설환경공학과)
  • Received : 2016.03.14
  • Accepted : 2016.09.07
  • Published : 2017.02.28

Abstract

This paper proposes nominal flexural strength considering strain-hardening effect of HSB600 high performance steel for compact composite I-girders in positive bending. Unlike conventional steels, HSB600 undergoes strain-hardening just after yielding without going through yield plateau. However, because the nominal flexural strength specified in domestic and foreign bridge design specifications has been developed for the conventional steel composite girders, the nominal flexural strength does not appropriately consider the strain-hardening of HSB600. Therefore, plastic moment considering a strain-hardening is proposed so as to consider effect of the strain-hardening of HSB600 on flexural strength and then moment-curvature analysis is performed to a wide range of cross-sections. From results of the analysis, a parameter representing the effect of the strain-hardening on the flexural strength of HSB600 composite girders is proposed. Furthermore, by using this parameter, the nominal flexural strength considering the strain-hardening effect for HSB600 composite I-girders in positive bending is proposed and then evaluated by comparing with the current AASHTO LRFD bridge design specifications.

본 연구에는 HSB600 고강도 강재의 변형-경화를 고려한 조밀 강합성 I-거더의 정모멘트부 공칭휨강도를 제안한다. HSB600은 일반강재와는 다르게 명확한 항복 고원을 보이지 않고 항복 직후 변형-경화가 진행된다. 하지만 현 국내외 설계기준에 있는 공칭휨강도 식은 일반강재에 대하여 개발된 설계식이기 때문에 HSB600의 변형-경화 특성을 제대로 반영하지 못하고 있다. 따라서 HSB600의 변형-경화 특성이 휨강도에 미치는 영향을 고려하기 위해, 강합성 거더의 변형-경화를 고려한 소성모멘트를 제안한 후 다수의 해석단면을 대상으로 모멘트-곡률 수치해석을 수행하였다. 해석 결과를 토대로 HSB600 고강도 강재의 변형-경화가 강합성 거더 휨강도에 미치는 영향을 나타내는 매개변수를 제안하였다. 또한 이 매개변수를 이용하여 HSB600 강합성 거더의 변형-경화를 고려한 정모멘트부 공칭휨강도를 제안하였고 현 AASHTO LRFD 교량설계기준의 공칭휨강도와 비교 검토하였다.

Keywords

References

  1. 한국도로교통협회(2015) 도로교설계기준(한계상태설계법). Korea Road & Transportation Association (2015) Highway Bridge Design Codes (Limit State Design) (in Korean).
  2. 국토해양부(2014) 강구조설계기준(하중저항계수설계법), 한국강구조학회. Ministry of Land, Transport and Maritime Affairs (2014) Korean Steel Structure Design Code (Load and Resistant Factored Design), KSSC (in Korean).
  3. AASHTO (2014) LRFD Bridge Design Specifications, Seventh Edition, Washington, D.C.
  4. Ansourian, P. (1982) Plastic Rotation of Composite Beams, Journal of Structures Division, ASCE, Vol.108, No.3, pp.643-659.
  5. Vasseghi, A. (1989) Strength and Behavior of Composite Plate Girders under Shear and Bending Moment, Ph.D. Dissertation, The University of Texas-Austin.
  6. Wittry, D.M. (1993) An Analytical Study of The Ductility of Steel-Concrete Composite Sections, MS Thesis, The University of Texas-Austin.
  7. Youn, S.G., Bae, D., and Kim, Y.J. (2008) Ultimate Flexural Strength of Hybrid Composite Girders Using High-Performance Steel of HSB600 at Sagging Bending, Proceedings of 2008 Composite Construction in Steel and Concrete VI, ASCE, Colorado, pp.680-690.
  8. Youn, S.G. (2013) Nominal Moment Capacity of Hybrid Composite Sections Using HSB600 High-Performance Steel, International Journal of Steel Structures, KSSC, Vol.13, No.2, pp.243-252. https://doi.org/10.1007/s13296-013-2004-7
  9. 윤석구(2013) 정모멘트부 강합성거더의 공칭휨강도 재평가, 한국강구조학회 논문집, 한국강구조학회, 제25권, 제2호, pp.165-178. Youn, S.G. (2010) Revaluation of Nominal Flexural Strength of Composite Girders in Positive Bending Region, Journal of Korean Society of Steel Construction, KSSC, Vol.25, No.2, pp.165-178 (in Korean). https://doi.org/10.7781/kjoss.2013.25.2.165
  10. 조은영, 신동구(2010) HSB 강합성거더 정모멘트부 휨거동, 한국강구조학회 논문집, 한국강구조학회, 제22권, 제4호, pp.377-388. Cho, E.Y. and Shin, D.K. (2010) Flexural Behavior of Composite HSB I-Girders in Positive Moment, Journal of Korean Society of Steel Construction, KSSC, Vol.22, No.4, pp.377-388 (in Korean).
  11. 박용명, 강지훈, 이건준, 김희순(2014) HSB800 및 HSB600 강재를 적용한 하이브리드거더의 휨강도 평가, 한국강구조학회 논문집, 한국강구조학회, 제26권, 제6호, pp.581-594. Park, Y.M., Kang, J.H., Lee, K.J., and Kim, H.S. (2014) Evaluation of Flexural Strength of Hybrid Girder composed of HSB800 and HSB600 Steel, Journal of Korean Society of Steel Construction, KSSC, Vol.26, No.6, pp.581-594 (in Korean). https://doi.org/10.7781/KJOSS.2014.26.6.581
  12. Rotter, J.M. and Ansourian, P. (1979) Cross-Section Behavior and Ductility in Composite Beams, Proceedings of the Institution of the Civil Engineers, Thomas Telford, Vol.67, No.2, pp.453-474.
  13. AASHTO (2000) LRFD Bridge Design Specifications, Second Edition, Washington, D.C.
  14. AASHTO (2002) LRFD Bridge Design Specifications, Second Edition-Interim, Washington, D.C.
  15. AASHTO (2004) LRFD Bridge Design Specifications, Third Edition, Washington, D.C.
  16. CEB (1990) CEB-FIP Model Code, Thomas Telford, Laussance, Switzerland.
  17. Yakel, A.J. and Azizinamini, A. (2005) Improved Moment Strength Prediction of Composite Steel Plate Girders in Positive Bending, Journal of Bridge Engineering, ASCE, Vol.10, No.1, pp.28-38. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:1(28)
  18. 조은영, 신동구(2010) HSB 강합성거더 정모멘트부의 휨저항강도, 한국강구조학회 논문집, 한국강구조학회, 제22권, 제4호, pp.389-398. Cho, E.Y. and Shin, D.K. (2010) Flexural Strength of Composite HSB Girders in Positive Moment, Journal of Korean Society of Steel Construction, KSSC, Vol.22, No.4, pp.389-398 (in Korean).
  19. 최동호, 임지훈(2014) HSB 고성능 강재를 적용한 강합성 I-거더 정모멘트에 대한 휨저항강도 및 연성비, 한국강구조학회 논문집, 한국강구조학회, 제26권, 제3호, pp.205-217. Choi, D.H. and Lim, J,H. (2014) Flexural Resistance and Ductility Ratio of Composite Hybrid I-Girder Using HSB High Performance Steel in Positive Bending, Journal of Korean Society of Steel Construction, KSSC, Vol.26, No.3, pp.205-217 (in Korean). https://doi.org/10.7781/KJOSS.2014.26.3.205

Cited by

  1. Strength Interaction of Wide Steel Box Girder Subjected to Concurrent Action of Compression and Flexure for Cable-Supported Bridges vol.31, pp.4, 2019, https://doi.org/10.7781/kjoss.2019.31.4.301