DOI QR코드

DOI QR Code

Study on a Model-based Design Technique for Monitoring and Control of a Vehicle Cluster

자동차 클러스터의 감시 및 제어를 위한 모델기반설계 기법 연구

  • Kim, Dong Hun (Department of Electrical Engineering, Kyungnam University)
  • Received : 2016.11.04
  • Accepted : 2016.11.16
  • Published : 2017.02.25

Abstract

This paper presents the development of a monitoring and control system for a vehicle cluster using a model-based design technique. For MBD(model-based design), MATLAB GUI(Graphic User Interface), M programs, simulink, state flow, and tool boxes are used to monitor a number of data such as warning, interrupts, and etc. connected to a real vehicle cluster. As a monitoring tool, a PC(Personal Computer) station interworks with the real vehicle cluster through the interface commands of tool boxes. Thus, unlike existing text-based designs, the MBD based vehicle cluster system provides very easy algorithm updates and addition, since it offers a number of blocks and state flow programs for each functional actions. Furthermore, the proposed MBD technique reduces the required time and cost for the development and modification of a vehicle cluster, because of verification and validation of the cluster algorithm on the monitor through a PC.

본 연구는 모델기반설계 기법을 이용하여 자동차 클러스터의 감시 및 제어를 하는 스테이션을 설계한다. 설계 도구로 매트랩 GUI(Graphic User Interface), M 프로그램, 시뮬링크(simulink), 스테이트 플로우(state flow), 툴박스(tool box)를 사용하여 실제 자동차 클러스터 시스템과 연동하여 자동차에서 들어오는 경고, 인터럽트 등의 각종 정보 등을 감시한다. 감시 수단으로는 PC(Personal Computer) 스테이션을 사용하여 자동차 클러스터 설계 시 툴 박스의 인터페이스 명령함수가 실제 자동차 클러스터 시스템과 연동하게 한다. 따라서, 기존의 텍스트 방식과 달리 모델기반설계로 개발된 자동차 클러스터 시스템은 각 기능 및 알고리즘을 블록과 상태플로우로 프로그램에 따라 작성하기 때문에 알고리즘의 수정이나 기능 추가가 용이하며, 또한, PC를 통해 모니터 상에서 동작 알고리즘을 검증하기 때문에 클러스터의 개발과 수정에 따른 많은 시간과 비용을 절감할 수 있는 효과를 준다.

Keywords

References

  1. L. Marcil, "MBD & code generation: A cost effective way to speed up HMI certification," IEEE/AIAA 30th Digital Avionics Systems Conference (DASC), pp. 8B1-1-10, 2011.
  2. V. Socci, "Implementing a model-based design and test workflow," IEEE International Symposium on Systems Engineering (ISSE), pp. 130-134, 2015.
  3. J. C. Jensen, D. H. Chang, and E. A. Lee, "Amodel-based design methodology for cyber-physical systems," 7th International Wireless Communications and Mobile Computing Conference. pp. 1666-1671, 2011.
  4. L. Wang, G. Wang, W. W. X. Zhan, X. Liu, and P Chen, "MBD-DSP: A model based design solution for DSP," International Conference on Electrical and Control Engineering (ICECE), pp. 4561-4564, 2011.
  5. L. Jowiak and J. Madsen, "Quality-driven mod el-based design of multi-processor embedded systems for highlydemanding applications," 2nd Mediterranean Conference on Embedded Computing (MECO). pp. 1-3, 2013.
  6. L. Ost, L. S. Indrusiak, S. Maatta, M. Mandelli, J. Nurmi, and F. Moraes, "Model-based design flow for NoC-based MPSoCs," 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 750-753, 2010.
  7. A. Kim, S. Rhee, and H. Jang, "Lane Detection for Parking Violation Assessments," International Journal of Fuzzy Logic and Intelligent Systems, vol. 16, no. 1, pp. 13-20, 2016. https://doi.org/10.5391/IJFIS.2016.16.1.13
  8. L. Fu, W. Wu, Y. Zhang, and R. Klette, "Unusual Motion Detection for Vision-Based Driver Assistance," International Journal of Fuzzy Logic and Intelligent Systems, vol. 15, no. 1, pp. 27-34, 2015. https://doi.org/10.5391/IJFIS.2015.15.1.27
  9. H. Son, H. Ban, K. Yang, and Y. Rhee, "Implement of Intelligent Head-Up Display for Vehicle," Journal of Korean Institute of Intelligent Systems, vol. 20, no. 3, pp. 400-405, 2010. https://doi.org/10.5391/JKIIS.2010.20.3.400
  10. H. M. R. Ugalde, D. Ojeda, V. L. Rolle, D. Andreu, D. Guiraud, J. Bonnet, C. Henry, N. Karam, A. Hagege, P. Mabo, G. Carrault, and A. Hernandez, "Model-Based Design and Experimental Validation of Control Modules for Neuromodulation Devices," IEEE Transactions on Biomedical Engineering, vol. 63, no. 7, pp. 1551-1558, 2016. https://doi.org/10.1109/TBME.2015.2498878
  11. T. Miyajima, H. Fujimoto, and M. Fujitsuna, "A Precise Model-Based Design of Voltage Phase Controller for IPMSM," IEEE Transactions on Power Electronics. vol. 28. no. 7. pp. 5655-5664, 2013. https://doi.org/10.1109/TPEL.2013.2259262
  12. K. Janschek and A. Morozov, "Dependability aspects of model-based systems design for me chatronic systems," IEEE International Conference on. Mechatronics (ICM), pp. 15-22, 2015.
  13. G. Yang, M. Zhao, L. Hong, and Z. Wu, "SmartOSEK Based Design and Verification for In-vehicle Network System: A Model-Based Approach," 9th International Conference on Control, Automation, Robotics and Vision, pp. 1-6, 2006.
  14. M. Hufner, C. Sonntag, S. Engell, and S. Grobosch, "A customized design framework for the model-based development of engine control systems," Industrial Electronics Society, IECON - 39th Annual Conference of the IEEE. pp. 6916-6921, 2013.
  15. S. D. Wall, "Model-based engineering design for space missions," Aerospace Conference, Proceedings. IEEE. vol. 6. pp. 3907-3915, 2004.
  16. Available: http://www.etnews.com/201309270318
  17. Available: http://kr.mathworks.com/matlabcentral/fileexchange/?utf8=%E2%9C%93&term=Model+ Based+Design
  18. Available: http://kr.mathworks.com/videos/designing-displays-using-model-based-design-98151.html?form_seq=conf1008&elqsid=1433916065028&potential_use=Education&country_code=KR