DOI QR코드

DOI QR Code

Study on Hot Water Immersion Treatment for Control of Meloidogyne spp. and Pratylenchus spp. in a Ginger, Zingiber officinale

생강에서 뿌리혹선충과 뿌리썩이선충의 사멸을 위한 온탕침지처리 연구

  • Cho, Donghun (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency) ;
  • Park, Kyonam (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency) ;
  • Kim, Yangho (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency) ;
  • Koh, Kyung-bong (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency) ;
  • Park, Youngjin (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency)
  • 조동훈 (농림축산검역본부 식물검역기술개발센터) ;
  • 박교남 (농림축산검역본부 식물검역기술개발센터) ;
  • 김양호 (농림축산검역본부 식물검역기술개발센터) ;
  • 고경봉 (농림축산검역본부 식물검역기술개발센터) ;
  • 박영진 (농림축산검역본부 식물검역기술개발센터)
  • Received : 2017.01.23
  • Accepted : 2017.04.15
  • Published : 2017.06.01

Abstract

Plant parasitic nematodes, Meloidogyne and Pratylenchus spp., are mostly detected in imported bulbs and tubers including a ginger, Zingiber officinale in Korea by quarantine inspection. However, there is little information on hot water immersion treatment (HWIT) for control of exotic nematodes, which induce economic loss by discard or send back to exporter, in imported gingers. In here, we determined that mortality of two plant parasitic nematodes and thermal stability of ginger. Meloidogyne and Pratylenchus spp. were completely killed at $48^{\circ}C$ and $49^{\circ}C$ for 30 sec by HWIT. Thermal conduction of Z. officinale to reach a target temperature as $50^{\circ}C$ take 10~32 min and 6~16 min for core and inner 5 mm region from surface, respectively. When ginger exposed at $51^{\circ}C$ for 30 min, growth of Z. officinale was not affected by heat treatment compared with control. Based on these results, HWIT at $51^{\circ}C$ for 30 min completely killed artificially infected juveniles of Meloidogyne spp. in Z. officinale. Therefore, this condition for HWIT will be used as fundamental information on phytosanitory to kill two plant parasitic nematodes without damage on ginger.

식물기생성 선충인 뿌리혹선충과 뿌리썩이선충은 국내에서 생강을 포함한 수입 구근류에서 주로 검출되는 검역대상 해충이다. 그러나 이러한 선충류가 검출된 수입 생강의 경우 적절한 소독처리기준이 마련되어 있지 않아 폐기 및 반송처리로 인한 경제적 손실이 발생하고 있다. 본 연구에서는 생강에 침입한 검역 대상 선충의 사멸을 위한 식물소독처리 기준 마련을 위해 뿌리혹선충과 뿌리썩이선충을 사멸할 수 있는 온탕침지법에 관하여 조사하였다. 그 결과, 뿌리혹선충과 뿌리썩이선충은 각각 $48^{\circ}C$$49^{\circ}C$에서 30초간의 온탕침지 처리로 사멸되었다. $52.5^{\circ}C$로 설정된 60 L의 항온수조에 침지된 생강의 열전도 조사에서 생강 중심부와 내부 5 mm 두께의 온도가 $50^{\circ}C$까지 도달하기까지는 각각 10~32분과 6~16분이 소요되었으며 $51^{\circ}C$에서 30분 동안 온탕침지한 생강은 정상적으로 생육하였다. 본 결과를 바탕으로 뿌리혹선충의 유충을 생강에 인공접종 한 후 $51^{\circ}C$에서 30분간 온탕침지 하였을 때 처리한 선충이 모두 사멸되었다. 따라서 이상의 온탕침지 처리 조건은 생강에 영향을 주지 않고 두 종의 선충을 사멸시킬 수 있는 식물소독법의 기초자료가 될 것이다.

Keywords

References

  1. Animal and Plant Quarantine Agency, 2016. Pest Information System. http://10.110.128.100/main/main.asp (accessed on 11 January, 2017).
  2. Bridge, J. 1975. Hot water treatment to control plant parasitic nematodes of tropical crops. Meded. Fac. Landbouww. Rijks. Univ. Gent. 40, 249-259.
  3. Castilo, P., Vovlas, N., 2007. Pratylenchus (Nematoda:Pratylenchidae): Diagnosis, biology, pathogenicity and management. Brill Leiden, Boston.
  4. Choi, Y.H., 1982. Phytonematology. Hyangmoonsa, Korea, pp. 58-69.
  5. Finney, D.J., 1971. Probit analysis. Cambridge University Press, Cambridge.
  6. Jo, M.H., Ham, I.K., Lee, G.H., Lee, J.K., Lee, G.S., Park, S.K., Kim, T.I., Lee, E.M., 2011. Comparison of active ingredients between field grown and in vitro cultured Rhizome of Korean native ginger (Zingiber officinale Roscoe). Korean J. Plant Res. 24, 404-412. https://doi.org/10.7732/kjpr.2011.24.4.404
  7. Kim, D., Chun, J.Y., 2014. Identification of root-lesion nematode (Pratylenchidae: Pratylenchus) intercepted on imported plants. Korean J. Appl. Entomol. 53, 51-57. https://doi.org/10.5656/KSAE.2013.10.1.083
  8. Kim, S.S., Kang, S.I., Kim, Y.S., Lee, S.H., Hong, K.W., Kim, K.Y., 2011. Biological control of root-knot nematode by Streptomyces samponii KK1024. Korean J. Soil Sci. Fert. 44, 1150-1157. https://doi.org/10.7745/KJSSF.2011.44.6.1150
  9. Lee, Y.S., Park, Y.S., Kim, S.B., Kim, S.Y., 2013. Biological control of root-knot nematode by Lysobacter capsici YS1215. Korean J. Soil Sci. Fert. 46, 105-111. https://doi.org/10.7745/KJSSF.2013.46.2.105
  10. Ma, K., Cho, Y., Jeong, B., Choi, D., 2011. Control effect on root-knot nematodes by hot water dipping treatment in kiwifruit. Korean J. Organic Agric. 19, 255-258.
  11. Miller, S.A., Melanie, L., Lewis, I., 2005. Hot water and chlorine treatment of vegetable seeds to eradicate bacterial plant pathogens. Ohio State University Extension Fact Sheet, Ohio.
  12. Nega, E., Ulrich, R., Werner, S., Jahn, M., 2003. Hot water treatment of vegetable seed - an alternative seed treatment method to control seed-borne pathogens in organic farming. J. Plant Dis. Protect 110, 220-234.
  13. Park, M.H., Walpola, B.C., Kim, S.J., Yoon, M.H., 2012. Control effect of root-knot nematode (Meloidogyne incognita) by biological nematicide. Korean. J. Soil Sci. Fert. 45, 162-168. https://doi.org/10.7745/KJSSF.2012.45.2.162
  14. SAS Institute, Inc. 1989. SAS/STAT User's Guide, 6.03 ed. SAS Institute, North Carolina.
  15. Trujillo, E.E. 1964. Diseases of ginger (Zinger officinale) in Hawaii. Circular 62. Hawaii Agricultural Experiment Station, Univ. of Hawaii, Honolulu.
  16. Wang, K.H., McSorley, R. 2008. Exposure time to lethal temperatures for Meloidogyne incognita suppression and its implication for soil solarization. J. Nematol. 40, 7-12.