References
- Aarts, R.G.K.M. and Jonker, J.B. (2002), "Dynamic simulation of planar flexible link manipulators using adaptive modal integration", Multi-body Syst. Dyn., 7(1), 31-50. https://doi.org/10.1023/A:1015271000518
- Ailon, A. (1998), "An approach for set-point regulation of electrically driven flexible-joint robots with uncertain parameters", The IEEE International Conference on Control Applications, 882-886.
- Bayo, E. (1989), "Timoshenko versus Bernoulli-Euler beam theories for inverse dynamics of flexible robots", Int. J. Robotics Automat., 4(1), 53-56.
- Beirao da Veiga, L., Lovadina, C. and Reali, A. (2012), "Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods", Comput. Method. Appl. Mech. Eng., 241, 38-51.
- Desai, J.P. and Kumar, V. (1999), "Motion planning of nonholonomic cooperating mobile manipulators", J. Robotic Syst., 16(10), 557-579. https://doi.org/10.1002/(SICI)1097-4563(199910)16:10<557::AID-ROB3>3.0.CO;2-H
- Dmitrochenko, O. (2008), "Finite elements using absolute nodal coordinates for large deformation flexible multi-body dynamics", J. Comput. Appl. Math., 215(2), 368-377. https://doi.org/10.1016/j.cam.2006.04.063
- Dombrowski, S.V. (2002), "Analysis of large flexible body deformation in multi-body systems using absolute coordinates", Multi-body Syst. Dyn., 8(4), 409-432. https://doi.org/10.1023/A:1021158911536
- Dwivedy, S.K. and Eberhard, P. (2006), "Dynamic analysis of flexible manipulators, a literature review", Mechanism and Machine Theory, 41(7), 749-777. https://doi.org/10.1016/j.mechmachtheory.2006.01.014
- Fukuda, T., Fujisawa, Y., Muro, E., Hoshino, H., Otubo, K., Uehara, K., Kosuge, K., Arai, F. and Miyazaki, T. (1992), "Manipulator/vehicle system for man-robot cooperation", The IEEE international conference on robotics and automation, 74-79.
- Ghasempoor, A. and Sepehri, N. (1995), "A measure of stability for mobile based manipulators", The IEEE international conference on robotics and automation, 2249-2254.
- Huang, Q., Tanie, K. and Sugano, S. (2000), "Coordinated motion planning for a mobile manipulator considering stability and manipulation", Int. J. Robotic. Res., 19(8), 732-742. https://doi.org/10.1177/02783640022067139
- Iwai, R. and Kobayashi, N. (2003), "A new flexible multi-body beam element based on the absolute nodal coordinate formulation using the global shape function and the analytical mode shape function", Nonlinear Dyn., 34, 207-232. https://doi.org/10.1023/B:NODY.0000014560.78333.76
- Kim, J., Chung, W.K., Youm. Y. and Lee, B.H. (2002), "Real time ZMP compensation method using null motion for mobile manipulator", The IEEE international conference on robotics and automation, 1967-1972.
- Korayem, M.H. and Ghariblu, H. (2004), "The effect of base replacement on the dynamic load carrying capacity of robotic manipulators", Int. J. Adv. Manufact. Technol., 23(1-2), 28-38. https://doi.org/10.1007/s00170-002-1528-3
- Korayem, M.H., Haghpanahi, M. and Heidari, H.R. (2012), "Analysis of flexible mobile manipulators undergoing large deformation with stability consideration", Latin Am. Appl. Res., 42(2), 111-119.
- Korayem, M.H. and Basu, A. (1994), "Dynamic load carrying capacity of robotic manipulators with joint elasticity imposing accuracy constraints", Robot. Autonomous Syst., 13(3), 219-229. https://doi.org/10.1016/0921-8890(94)90037-X
- Korayem, M.H. and Heidari, A. (2007), "Maximum allowable dynamic load of flexible mobile manipulators using finite element approach", Int. J. Adv. Manufact. Technol., 36(9), 606-617.
- Korayem, M.H. and Shokri, M. (2008), "Maximum dynamic load carrying capacity of a 6 ups-Stewart platform manipulator", Scientia Iranica, 15(1), 131-143.
- Korayem, M.H., Ghariblu, H. and Basu, A. (2005), "Dynamic load-carrying capacity of mobile base flexible joint manipulators", Int. J. Adv. Manufact. Technol., 25(1), 62-70. https://doi.org/10.1007/s00170-003-1868-7
- Korayem, M.H., Haghpanahi, M. and Heidari, H.R. (2010), "Maximum allowable dynamic load of flexible manipulators undergoing large deformation", Scientia Iranica, 17(1), 61-74.
- Kubler, L., Eberthard, P. and Geisler, J. (2003), "Flexible multibody systems with large deformations and nonlinear structural damping using absolute nodal coordinates", Nonlinear Dyn., 34(1-2), 31-52. https://doi.org/10.1023/B:NODY.0000014551.75105.b4
- Lin, Y.J. and Gogate, S.D. (1989), "Modeling and motion simulation of an n-link flexible robot with elastic joints", The International Symposium on Robotics and Manufacturing, Santa Barbara, CA, 39-43.
- Liu, J., Hong, J. and Cui, L. (2007), "An exact nonlinear hybridcoordinate formulation for flexible multi-body systems", Acta Mechanica Sinica, 23(6), 699-706. https://doi.org/10.1007/s10409-007-0118-x
- Moosavian, S.A.A. and Alipour, K. (2006), "Stability evaluation of mobile robotic systems using moment- height measure", The IEEE International Conference on Robotics, Automation and Mechatronics, Bangkok, 1-6.
- Papadopoulos, E. and Ray, D. (1996), "A new measure of tip over stability margin for mobile manipulators", The IEEE international conference on robotics and automation, 3111-3116.
- Rakowski, J. (1990), "The interpretation the shear locking in beam elements", Comput. Struct., 37(5), 769-776. https://doi.org/10.1016/0045-7949(90)90106-C
- Shabana, A.A. (1998), "Computer Implementation of the absolute nodal coordinate formulation for flexible multi-body dynamics", Nonlinear Dyn., 16(3), 293-306. https://doi.org/10.1023/A:1008072517368
- Subudhi, B. and Morris, A.S. (2002), "Dynamic modeling, simulation and control of a manipulator with flexible links and joints", Robot. Autonomous Syst., 41(4), 257-270. https://doi.org/10.1016/S0921-8890(02)00295-6
- Sweet, L.M. and Good, M.C. (1984), "Re-definition of the robot motion control problem: effects of plant dynamics, drive systems, constraints and user requirement", The 23rd IEEE Conference on Decision and Control, Las Vegas, NV, 724-731.
- Thomas, M., Yuan-Chou, H.C. and Tesar, D. (1985), "Optimal actuator sizing for robotic manipulators based on local dynamic criteria", J Mech. Trans. Auto. Des., ASME, 107, 163-169. https://doi.org/10.1115/1.3258705
- Vallejo, D.G., Escalona, J.L., Mayo, J. and Dominguez, J. (2003), "Describing rigid-flexible multi-body systems using absolute coordinates", Nonlinear Dyn., 34(1), 75-94. https://doi.org/10.1023/B:NODY.0000014553.98731.8d
- Wang, L.T. and Ravani, B. (1988), "Dynamic load carrying capacity of mechanical manipulators - part I: Problem formulation", Trans. J. Dyn. Syst., Measure. Control, ASME, 110, 46-52. https://doi.org/10.1115/1.3152647
- Yang, G.B. and Donath, M. (1988), "Dynamic model of a two link robot manipulator with both structural and joint flexibility", The ASME 1 Winter Annual Meeting, Chicago, IL, 37-44.
- Yuan, K. and Lin, L. (1990), "Motor-based control of manipulators with flexible joints and links", Proceedings of the IEEE International Conference on Robotics and Automation, 1809-1814.
- Yue, S. and Tso, S.K. (2001), "Maximum dynamic payload trajectory for flexible robot manipulators with kinematic redundancy", Mech. Machine Theory, 36(6), 785-800. https://doi.org/10.1016/S0094-114X(00)00059-8
- Yue, S.G., Yu, Y.Q. and Bai, S.X. (1997), "Flexible rotor beam element for robot manipulators with link and joint flexibility", Mech. Machine Theory, 32(2), 209-219. https://doi.org/10.1016/S0094-114X(96)00045-6
Cited by
- Nonlinear dynamics of flexible slender structures moving in a limited space with application in nuclear reactors vol.104, pp.4, 2021, https://doi.org/10.1007/s11071-021-06582-1