참고문헌
- Y. Ling, N. Zhang, F. Qu, T. Wen, Z. F. Gao, N. B. Li, and H. Q. Luo, Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters, Spectrochim. Acta A, 118, 315-320 (2014). https://doi.org/10.1016/j.saa.2013.08.097
- A. L. Hu, Y. H. Liu, H. H. Deng, G. L. Hong, A. L. Liu, X. H. Lin, H. H. Xia, and W. Chen, Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and L-lactate detection, Biosens. Bioelectron., 61, 374-378 (2014). https://doi.org/10.1016/j.bios.2014.05.048
- C. Zhao, Z. W. Jiang, R. Z. Mu, and Y. F. Li, A novel sensor for dopamine on the turn-on fluorescence of Fe-MIL-88 metal-organic frameworks-hydrogen peroxide-o-phenylenediamine system, Talanta, 159, 365-370 (2016). https://doi.org/10.1016/j.talanta.2016.06.043
- L. J. Zhang, W. C. Chen, Z. M. Zhang, and C. Lu, Highly selective sensing of hydrogen peroxide based on cobalt-ethylenediaminetetraacetate complex intercalated layered double hydroxide-enhanced luminol chemiluminescence, Sens. Actuators B, 193, 752-758 (2014). https://doi.org/10.1016/j.snb.2013.12.036
- D. L. Yu, P. Wang, Y. J. Zhao, and A. P. Fan, Iodophenol blue-enhanced luminol chemiluminescence and its application to hydrogen peroxide and glucose detection, Talanta, 146, 655-661 (2016). https://doi.org/10.1016/j.talanta.2015.06.059
- M. Iranifam and N. R. Hendekhale, CuO nanoparticles-catalyzed hydrogen peroxide-sodium hydrogen carbonate chemiluminescence system used for quenchometric determination of atorvastatin, rivastigmine and topiramate, Sens. Actuators B, 243, 532-541 (2017). https://doi.org/10.1016/j.snb.2016.12.013
- M. L. C. Passos, D. S. M. Ribeiro, J. L. M. Santos, M. Lucia, and M. F. S. Saraiva, Physical and chemical immobilization of choline oxidase onto different porous solid supports: Adsorption studies, Enzyme Microb. Technol., 90, 76-82 (2016). https://doi.org/10.1016/j.enzmictec.2016.05.004
- D. D. Zhang, X. Y. Ouyang, L. Z. Li, B. L. Dai, and Y. M. Zhang, Real-time amperometric monitoring of cellular hydrogen peroxide based on electrodeposited reduced graphene oxide incorporating adsorption of electroactive methylene blue hybrid composites, J. Electroanal. Chem., 780, 60-67 (2016). https://doi.org/10.1016/j.jelechem.2016.09.005
- X. Yang, Y. J. Ouyang, F. Wu, H. F. Zhang, and Z. Y. Wu, Insitu & controlled preparation of platinum nanoparticles dopping into graphene sheets@cerium oxide nanocomposites sensitized screen printed electrode for nonenzymatic electrochemical sensing of hydrogen peroxide, J. Electroanal. Chem., 777, 85-91 (2016). https://doi.org/10.1016/j.jelechem.2016.08.008
- O. A. Loaiza, P. J. Lamas-Ardisana, L. Anorga, E. Jubete, V. Ruiz, M. Borghei, G. Cabanero, and H. J. Grande, Graphitized carbon nanofiber-Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders, Bioelectrochemistry, 101, 58-65 (2015). https://doi.org/10.1016/j.bioelechem.2014.07.005
- J. L. Bai, X. Y. Zhang, Y. Peng, X. D. Hong, Y. Y. Liu, S. Y. Jiang, B. A. Ning, and Z. X. Gao, Ultrasensitive sensing of diethylstilbestrol based on AuNPs/MWCNTs-CS composites coupling with sol-gel molecularly imprinted polymer as a recognition element of an electrochemical sensor, Sens. Actuators B, 238, 420-426 (2017). https://doi.org/10.1016/j.snb.2016.07.035
- K. Thenmozhi and S. S. Narayanan, Horseradish peroxidase and toluidine blue covalently immobilized leak-free sol-gel composite biosensor for hydrogen peroxide Mater. Sci. Eng. C, 70, 223-230 (2017). https://doi.org/10.1016/j.msec.2016.08.075
- C. X. Chen, X. Z. Hong, T. Ti. Xu, A. K. Chen, L. Lu, and Y. H. Gao, Hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto a poly(aniline-co-N-methionine) film, Synth. Met., 212, 123-130 (2016). https://doi.org/10.1016/j.synthmet.2015.12.012
- T. Y. Tekbasoglu, T. Soganici, M, Ak, A. Koca, and M. K. Sener, Enhancing biosensor properties of conducting polymers via copolymerization: Synthesis of EDOT-substituted bis(2-pyridylimino) isoindolato-paladium complex and electrochemical sensing of glucose by its copolymerized film, Biosens. Bioelectron., 87, 81-88 (2017). https://doi.org/10.1016/j.bios.2016.08.020
- A. Y. Kahn, S. B. Nonura, and R. Bandyopadhyaya, Superior performance of a carbon-paste electrode based glucose biosensor containing glucose oxidase enzyme in mesoporous silica powder, Adv. Powder Technol., 27, 85-92 (2016). https://doi.org/10.1016/j.apt.2015.11.003
-
J. Anojcic, V. Guzsvany, O. Vajdle, and D. Madarasz, Hydrodynamic chronoamperometric determination of hydrogen peroxide using carbon paste electrodes coated by multiwalled carbon nanotubes decorated with
$MnO_2$ or Pt particles, Sens. Actuators B, 233, 83-92 (2016). https://doi.org/10.1016/j.snb.2016.04.005 - K. J. Yoon, Electrochemical determination of hydrogen peroxide using carbon paste biosensor bound with butadiene rubber, Anal. Sci. Technol., 23, 505-510 (2010). https://doi.org/10.5806/AST.2010.23.5.505
- H. S. Dho and K. J. Yoon, Electrochemical kinetic study of amperometric hydrogen peroxide biosensor fabricated using SBR, Ind. Eng. Chem., 17, 254-258 (2011). https://doi.org/10.1016/j.jiec.2011.02.016
- J. A. Brydson, Rubbery Materials and Their Compounds, 289-295, Elsevier Applied Science, London, UK (1988).
- A. Mansouri, D. P. Makris, and P. Keflas, Determination of hydrogen peroxide scavenging activity of cinnamic and benzoic acides employing a highly sensitive peroxyoxalate chemiluminescencebased assay, J. Pharm. Biomed. Anal., 39, 22-26 (2005). https://doi.org/10.1016/j.jpba.2005.03.044
- K. J. Yoon, Hydrogen peroxide sensitive biosensors based on mugwort-peroxidase entrapped in carbon pastes, Appl. Chem. Eng., 26, 624-629 (2015). https://doi.org/10.14478/ace.2015.1075
- K. B. Rhyu, Electrochemical kinetic assessment of rose tissue immobilized biosensor for the determination of hydrogen peroxidase, Appl. Chem. Eng., 25, 107-112 (2014). https://doi.org/10.14478/ace.2013.1106