DOI QR코드

DOI QR Code

과산화수소 정량을 위한 서양고추냉이 과산화효소 대용 아카시아의 활용

Application of Acacia as an Alternative to Horseradish Peroxidase for the Determination of Hydrogen Peroxide

  • 투고 : 2017.04.24
  • 심사 : 2017.05.12
  • 발행 : 2017.06.10

초록

바이오센서를 상업적으로 양산하고자 할 때 제작비의 경제성이 고려되어야 한다. 과산화수소를 정량하기 위한 효소전극 제작 시 필수적으로 사용되는, 서양고추냉이로부터 추출된 과산화효소는 대단히 고가이므로 탄소반죽법에 의한 전극제작의 제한 요인이 된다. 이 문제를 우회하고자 본 실험실에서는 생활주변에서 쉽게 얻을 수 있는 재료로 대체하기 위하여 아카시아 잎을 효소원으로 사용하여 과산화수소 센서를 제작하고 그것의 전기화학적 특성을 살펴보았다. 일정전압전류법으로 얻어진 10개 이상의 전기화학적 파라미터와 실험적 결과들은 효소전극이 정량적으로 그 기능을 발휘하고 있음을 보여주었다. 이런 사실들은 시판 과산화효소가 아카시아 잎으로 대체될 수 있음을 보여주는 것이다.

The curtailment of production cost is important for the mass production of biosensors. Since horseradish peroxidase, which is a key material of enzyme electrodes for hydrogen peroxide analysis is rather expensive, this has been a limiting factor for fabricating carbon paste based enzyme electrodes. In this paper, the acacia leaf tissue as a zymogen easily obtainable in our living environment was used as an alternative to horseradish peroxidase for developing a hydrogen peroxide sensor and the electrochemical properties were evaluated. Ten or more electrochemical parameters alongside the other experimental results acquired by the potentiostatic method demonstrated that our enzyme electrodes can be used for the quantitative analysis of hydrogen peroxide. This also indicates that acacia leaves can take the place of the marketed peroxidase.

키워드

참고문헌

  1. Y. Ling, N. Zhang, F. Qu, T. Wen, Z. F. Gao, N. B. Li, and H. Q. Luo, Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters, Spectrochim. Acta A, 118, 315-320 (2014). https://doi.org/10.1016/j.saa.2013.08.097
  2. A. L. Hu, Y. H. Liu, H. H. Deng, G. L. Hong, A. L. Liu, X. H. Lin, H. H. Xia, and W. Chen, Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and L-lactate detection, Biosens. Bioelectron., 61, 374-378 (2014). https://doi.org/10.1016/j.bios.2014.05.048
  3. C. Zhao, Z. W. Jiang, R. Z. Mu, and Y. F. Li, A novel sensor for dopamine on the turn-on fluorescence of Fe-MIL-88 metal-organic frameworks-hydrogen peroxide-o-phenylenediamine system, Talanta, 159, 365-370 (2016). https://doi.org/10.1016/j.talanta.2016.06.043
  4. L. J. Zhang, W. C. Chen, Z. M. Zhang, and C. Lu, Highly selective sensing of hydrogen peroxide based on cobalt-ethylenediaminetetraacetate complex intercalated layered double hydroxide-enhanced luminol chemiluminescence, Sens. Actuators B, 193, 752-758 (2014). https://doi.org/10.1016/j.snb.2013.12.036
  5. D. L. Yu, P. Wang, Y. J. Zhao, and A. P. Fan, Iodophenol blue-enhanced luminol chemiluminescence and its application to hydrogen peroxide and glucose detection, Talanta, 146, 655-661 (2016). https://doi.org/10.1016/j.talanta.2015.06.059
  6. M. Iranifam and N. R. Hendekhale, CuO nanoparticles-catalyzed hydrogen peroxide-sodium hydrogen carbonate chemiluminescence system used for quenchometric determination of atorvastatin, rivastigmine and topiramate, Sens. Actuators B, 243, 532-541 (2017). https://doi.org/10.1016/j.snb.2016.12.013
  7. M. L. C. Passos, D. S. M. Ribeiro, J. L. M. Santos, M. Lucia, and M. F. S. Saraiva, Physical and chemical immobilization of choline oxidase onto different porous solid supports: Adsorption studies, Enzyme Microb. Technol., 90, 76-82 (2016). https://doi.org/10.1016/j.enzmictec.2016.05.004
  8. D. D. Zhang, X. Y. Ouyang, L. Z. Li, B. L. Dai, and Y. M. Zhang, Real-time amperometric monitoring of cellular hydrogen peroxide based on electrodeposited reduced graphene oxide incorporating adsorption of electroactive methylene blue hybrid composites, J. Electroanal. Chem., 780, 60-67 (2016). https://doi.org/10.1016/j.jelechem.2016.09.005
  9. X. Yang, Y. J. Ouyang, F. Wu, H. F. Zhang, and Z. Y. Wu, Insitu & controlled preparation of platinum nanoparticles dopping into graphene sheets@cerium oxide nanocomposites sensitized screen printed electrode for nonenzymatic electrochemical sensing of hydrogen peroxide, J. Electroanal. Chem., 777, 85-91 (2016). https://doi.org/10.1016/j.jelechem.2016.08.008
  10. O. A. Loaiza, P. J. Lamas-Ardisana, L. Anorga, E. Jubete, V. Ruiz, M. Borghei, G. Cabanero, and H. J. Grande, Graphitized carbon nanofiber-Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders, Bioelectrochemistry, 101, 58-65 (2015). https://doi.org/10.1016/j.bioelechem.2014.07.005
  11. J. L. Bai, X. Y. Zhang, Y. Peng, X. D. Hong, Y. Y. Liu, S. Y. Jiang, B. A. Ning, and Z. X. Gao, Ultrasensitive sensing of diethylstilbestrol based on AuNPs/MWCNTs-CS composites coupling with sol-gel molecularly imprinted polymer as a recognition element of an electrochemical sensor, Sens. Actuators B, 238, 420-426 (2017). https://doi.org/10.1016/j.snb.2016.07.035
  12. K. Thenmozhi and S. S. Narayanan, Horseradish peroxidase and toluidine blue covalently immobilized leak-free sol-gel composite biosensor for hydrogen peroxide Mater. Sci. Eng. C, 70, 223-230 (2017). https://doi.org/10.1016/j.msec.2016.08.075
  13. C. X. Chen, X. Z. Hong, T. Ti. Xu, A. K. Chen, L. Lu, and Y. H. Gao, Hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto a poly(aniline-co-N-methionine) film, Synth. Met., 212, 123-130 (2016). https://doi.org/10.1016/j.synthmet.2015.12.012
  14. T. Y. Tekbasoglu, T. Soganici, M, Ak, A. Koca, and M. K. Sener, Enhancing biosensor properties of conducting polymers via copolymerization: Synthesis of EDOT-substituted bis(2-pyridylimino) isoindolato-paladium complex and electrochemical sensing of glucose by its copolymerized film, Biosens. Bioelectron., 87, 81-88 (2017). https://doi.org/10.1016/j.bios.2016.08.020
  15. A. Y. Kahn, S. B. Nonura, and R. Bandyopadhyaya, Superior performance of a carbon-paste electrode based glucose biosensor containing glucose oxidase enzyme in mesoporous silica powder, Adv. Powder Technol., 27, 85-92 (2016). https://doi.org/10.1016/j.apt.2015.11.003
  16. J. Anojcic, V. Guzsvany, O. Vajdle, and D. Madarasz, Hydrodynamic chronoamperometric determination of hydrogen peroxide using carbon paste electrodes coated by multiwalled carbon nanotubes decorated with $MnO_2$ or Pt particles, Sens. Actuators B, 233, 83-92 (2016). https://doi.org/10.1016/j.snb.2016.04.005
  17. K. J. Yoon, Electrochemical determination of hydrogen peroxide using carbon paste biosensor bound with butadiene rubber, Anal. Sci. Technol., 23, 505-510 (2010). https://doi.org/10.5806/AST.2010.23.5.505
  18. H. S. Dho and K. J. Yoon, Electrochemical kinetic study of amperometric hydrogen peroxide biosensor fabricated using SBR, Ind. Eng. Chem., 17, 254-258 (2011). https://doi.org/10.1016/j.jiec.2011.02.016
  19. J. A. Brydson, Rubbery Materials and Their Compounds, 289-295, Elsevier Applied Science, London, UK (1988).
  20. A. Mansouri, D. P. Makris, and P. Keflas, Determination of hydrogen peroxide scavenging activity of cinnamic and benzoic acides employing a highly sensitive peroxyoxalate chemiluminescencebased assay, J. Pharm. Biomed. Anal., 39, 22-26 (2005). https://doi.org/10.1016/j.jpba.2005.03.044
  21. K. J. Yoon, Hydrogen peroxide sensitive biosensors based on mugwort-peroxidase entrapped in carbon pastes, Appl. Chem. Eng., 26, 624-629 (2015). https://doi.org/10.14478/ace.2015.1075
  22. K. B. Rhyu, Electrochemical kinetic assessment of rose tissue immobilized biosensor for the determination of hydrogen peroxidase, Appl. Chem. Eng., 25, 107-112 (2014). https://doi.org/10.14478/ace.2013.1106