DOI QR코드

DOI QR Code

Effect of Oxidation-reduction Pretreatment for the Hydrogenation of Caster Oil over Ni/SiO2 Catalyst

산화-환원 전처리에 따른 Ni/SiO2 촉매의 캐스터오일 수소화

  • Choi, Yi Sun (Department of Chemical Engineering, Hankyong National University) ;
  • Kim, Soo Young (Department of Chemical Engineering, Hankyong National University) ;
  • Koh, Hyoung Lim (Department of Chemical Engineering, Hankyong National University)
  • Received : 2017.03.08
  • Accepted : 2017.04.16
  • Published : 2017.06.10

Abstract

Castor oil can be used as a useful raw material for chemical industries such as intermediates of surfactants through hydrogenation reaction. In this study, effects of the preparation method and pretreatment condition on the nickel catalyst for the hydrogenation of castor oil were investigated. The nickel catalyst was supported on the silica carrier by the precipitation method with different Ni contents, solution pH values, and precipitants. Repeated pretreatments of oxidation and reduction cycles were then carried out. The activity of the nickel catalyst was measured by comparing the iodine value of the castor oil. The dispersion of nickel on the catalyst was analyzed by X-ray diffraction (XRD), $N_2$ adsorption-desorption, and transmission electron microscopy (TEM). The activity of nickel catalyst was also compared by CO oxidation experiments. The redispersion of nickel occurred on the silica by repeated oxidation and reduction cycles, and this effect contributed to promoting the castor oil hydrogenation activity.

캐스터오일은 수소화반응을 통해 계면활성제의 중간체 등 유용한 화학산업의 원료로 활용 가능하다. 본 연구에서는 캐스터오일의 수소화용 니켈촉매의 제조조건과 전처리 조건에 대한 영향을 연구하였다. 니켈촉매는 침전제와 pH를 다르게 하여 실리카 담체상에 침전법으로 담지되었고, 다시 산화와 환원의 반복된 전처리를 행하였다. 니켈촉매의 활성은 캐스터오일의 요오드 가를 측정하여 비교하였고, 니켈촉매의 분산도는 XRD, BET, TEM을 통하여 분석하였다. 니켈촉매의 활성을 CO산화반응실험을 통하여도 비교하였다. 산화와 환원 사이클의 반복에 의해 니켈의 재분산이 실리카 상에서 발생하였고, 이것이 캐스터오일 수소화반응 활성을 증진시키는데 기여하였다.

Keywords

References

  1. S. Liu, Q. Zhu, Q. Guan, L. He, and W. Li, Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts, Bioresour. Technol., 183, 93-100 (2015). https://doi.org/10.1016/j.biortech.2015.02.056
  2. R. C. S. Schneider, V. Z. Baldissarelli, M. Martinelli, M. L. A. von Holleben, and E. B. Caramao, Determination of the disproportionation products of limonene used for the catalytic hydrogenation of castor oil, J. Chromatogr. A, 985, 313-319 (2003). https://doi.org/10.1016/S0021-9673(02)01464-4
  3. D. S. Ogunniyi, Castor oil: A vital industrial raw material, Bioresour. Technol., 97, 1086-1091 (2006). https://doi.org/10.1016/j.biortech.2005.03.028
  4. H. Y. Shrirame, N. L. Panwar, and B. R. Bamniya, Bio diesel from castor oil-A green energy option, Low Carbon Econ., 2, 1-6 (2011). https://doi.org/10.4236/lce.2011.21001
  5. R. C. S. Schneider, V. Z. Baldissarelli, F. Trombetta, M. Martinelli, and E. B. Caramao, Optimization of gas chromatographic-mass spectrometric analysis for fatty acids in hydrogenated castor oil obtained by catalytic transfer hydrogenation, Anal. Chim. Acta, 505, 223-226 (2004). https://doi.org/10.1016/j.aca.2003.10.070
  6. S. McArdle, J. J. Leahy, T. Curtin, and D. Tanner, Hydrogenation of sunflower oil over Pt-Ni bimetallic supported catalysts: Preparation, characterization and catalytic activity, Appl. Catal. A, 474, 78-86 (2014). https://doi.org/10.1016/j.apcata.2013.08.033
  7. M. I. P. da Silva, M. P. Nery, and C. A. T. Soto, Castor oil catalytic hydrogenation reaction monitored by Raman spectroscopy, Mater. Lett., 45, 197-202 (2000). https://doi.org/10.1016/S0167-577X(00)00104-X
  8. S. K. Saraswat and K. K. Pant, Synthesis of hydrogen and carbon nanotubes over copper promoted $Ni/SiO_2$ catalyst by thermocatalytic decomposition of methane, J. Nat. Gas Sci. Eng., 13, 52-59 (2013). https://doi.org/10.1016/j.jngse.2013.04.001
  9. R. Atsumi, R. Noda, H. Takagi, L. Vecchione, A. Di Carlo, Z. Del Prete, and K. Kuramoto, Ammonia decomposition activity over $Ni/SiO_2$ catalysts with different pore diameters, Int. J. Hydrogen Energy, 39, 13954-13961 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.003
  10. J. Vicente, J. Ereña, C. Montero, M. J. Azkoiti, J. Bilbao, and A. G. Gayubo, Reaction pathway for ethanol steam reforming on a $Ni/SiO_2$ catalyst including coke formation, Int. J. Hydrogen Energy, 39, 18820-18834 (2014). https://doi.org/10.1016/j.ijhydene.2014.09.073
  11. L. Dong, Y. Du, J. Li, H. Wang, Y. Yang, S. Li, and Z. Tan, The effect of $CH_4$ decomposition temperature on the property of deposited carbon over $Ni/SiO_2$ catalyst, Int. J. Hydrogen Energy, 40, 9670-9676 (2015). https://doi.org/10.1016/j.ijhydene.2015.06.005
  12. Z. Jia, B. Zhen, M. Han, and C. Wang, Liquid phase hydrogenation of adiponitrile over directly reduced $Ni/SiO_2$ catalyst, Catal. Commun., 73, 80-83 (2016). https://doi.org/10.1016/j.catcom.2015.10.021
  13. E. Ruckenstein and S. H. Lee, Redispersion and migration of Ni supported on alumina, J. Catal., 86, 457-464 (1984). https://doi.org/10.1016/0021-9517(84)90395-6
  14. K. Mette, S. Kühl, A. Tarasov, H. Düdder, K. Kahler, M. Muhler, R. Schlogl, and M. Behrens, Redox dynamics of Ni catalysts in $CO_2$ reforming of methane, Catal. Today, 242, 101-110 (2015). https://doi.org/10.1016/j.cattod.2014.06.011
  15. M. Gabrovska, J. Krstic, R. Edreva-Kardjieva, M. Stankovic, and D. Jovanovic, The influence of the support on the properties of nickel catalysts for edible oil hydrogenation, Appl. Catal. A, 299, 73-83 (2006). https://doi.org/10.1016/j.apcata.2005.10.011
  16. D. J. Suh, J. S. Chung, T. Lim, and S. H. Moon, Effect of nickel-silicate formation on catalytic properties of $Ni/SiO_2$ prepared by precipitation method, Korean Chem. Eng. Res., 27, 620-628 (1989).
  17. D. Potoczna-Petru, J. M. Jablonski, J. Okal, and L. Krajczyk, Influence of oxidation-reduction treatment on the microstructure of Co/$SiO_2$ catalyst, Appl. Catal. A, 175, 113-120 (1998). https://doi.org/10.1016/S0926-860X(98)00214-2
  18. L. Tang, D. Yamaguchi, B. Leita, V. Sage, N. Burke, and K. Chiang, The effects of oxidation-reduction treatment on the structure and activity of cobalt-based catalysts, Catal. Commun., 59, 166-169 (2015). https://doi.org/10.1016/j.catcom.2014.10.021
  19. J. Okal and H. Kubicka, Influence of oxidation-reduction treatment on activity and selectivity of Re supported on ${\gamma}$-alumina, Appl. Catal. A, 171, 351-359 (1998). https://doi.org/10.1016/S0926-860X(98)00105-7