References
- S. Liu, Q. Zhu, Q. Guan, L. He, and W. Li, Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts, Bioresour. Technol., 183, 93-100 (2015). https://doi.org/10.1016/j.biortech.2015.02.056
- R. C. S. Schneider, V. Z. Baldissarelli, M. Martinelli, M. L. A. von Holleben, and E. B. Caramao, Determination of the disproportionation products of limonene used for the catalytic hydrogenation of castor oil, J. Chromatogr. A, 985, 313-319 (2003). https://doi.org/10.1016/S0021-9673(02)01464-4
- D. S. Ogunniyi, Castor oil: A vital industrial raw material, Bioresour. Technol., 97, 1086-1091 (2006). https://doi.org/10.1016/j.biortech.2005.03.028
- H. Y. Shrirame, N. L. Panwar, and B. R. Bamniya, Bio diesel from castor oil-A green energy option, Low Carbon Econ., 2, 1-6 (2011). https://doi.org/10.4236/lce.2011.21001
- R. C. S. Schneider, V. Z. Baldissarelli, F. Trombetta, M. Martinelli, and E. B. Caramao, Optimization of gas chromatographic-mass spectrometric analysis for fatty acids in hydrogenated castor oil obtained by catalytic transfer hydrogenation, Anal. Chim. Acta, 505, 223-226 (2004). https://doi.org/10.1016/j.aca.2003.10.070
- S. McArdle, J. J. Leahy, T. Curtin, and D. Tanner, Hydrogenation of sunflower oil over Pt-Ni bimetallic supported catalysts: Preparation, characterization and catalytic activity, Appl. Catal. A, 474, 78-86 (2014). https://doi.org/10.1016/j.apcata.2013.08.033
- M. I. P. da Silva, M. P. Nery, and C. A. T. Soto, Castor oil catalytic hydrogenation reaction monitored by Raman spectroscopy, Mater. Lett., 45, 197-202 (2000). https://doi.org/10.1016/S0167-577X(00)00104-X
-
S. K. Saraswat and K. K. Pant, Synthesis of hydrogen and carbon nanotubes over copper promoted
$Ni/SiO_2$ catalyst by thermocatalytic decomposition of methane, J. Nat. Gas Sci. Eng., 13, 52-59 (2013). https://doi.org/10.1016/j.jngse.2013.04.001 -
R. Atsumi, R. Noda, H. Takagi, L. Vecchione, A. Di Carlo, Z. Del Prete, and K. Kuramoto, Ammonia decomposition activity over
$Ni/SiO_2$ catalysts with different pore diameters, Int. J. Hydrogen Energy, 39, 13954-13961 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.003 -
J. Vicente, J. Ereña, C. Montero, M. J. Azkoiti, J. Bilbao, and A. G. Gayubo, Reaction pathway for ethanol steam reforming on a
$Ni/SiO_2$ catalyst including coke formation, Int. J. Hydrogen Energy, 39, 18820-18834 (2014). https://doi.org/10.1016/j.ijhydene.2014.09.073 -
L. Dong, Y. Du, J. Li, H. Wang, Y. Yang, S. Li, and Z. Tan, The effect of
$CH_4$ decomposition temperature on the property of deposited carbon over$Ni/SiO_2$ catalyst, Int. J. Hydrogen Energy, 40, 9670-9676 (2015). https://doi.org/10.1016/j.ijhydene.2015.06.005 -
Z. Jia, B. Zhen, M. Han, and C. Wang, Liquid phase hydrogenation of adiponitrile over directly reduced
$Ni/SiO_2$ catalyst, Catal. Commun., 73, 80-83 (2016). https://doi.org/10.1016/j.catcom.2015.10.021 - E. Ruckenstein and S. H. Lee, Redispersion and migration of Ni supported on alumina, J. Catal., 86, 457-464 (1984). https://doi.org/10.1016/0021-9517(84)90395-6
-
K. Mette, S. Kühl, A. Tarasov, H. Düdder, K. Kahler, M. Muhler, R. Schlogl, and M. Behrens, Redox dynamics of Ni catalysts in
$CO_2$ reforming of methane, Catal. Today, 242, 101-110 (2015). https://doi.org/10.1016/j.cattod.2014.06.011 - M. Gabrovska, J. Krstic, R. Edreva-Kardjieva, M. Stankovic, and D. Jovanovic, The influence of the support on the properties of nickel catalysts for edible oil hydrogenation, Appl. Catal. A, 299, 73-83 (2006). https://doi.org/10.1016/j.apcata.2005.10.011
-
D. J. Suh, J. S. Chung, T. Lim, and S. H. Moon, Effect of nickel-silicate formation on catalytic properties of
$Ni/SiO_2$ prepared by precipitation method, Korean Chem. Eng. Res., 27, 620-628 (1989). -
D. Potoczna-Petru, J. M. Jablonski, J. Okal, and L. Krajczyk, Influence of oxidation-reduction treatment on the microstructure of Co/
$SiO_2$ catalyst, Appl. Catal. A, 175, 113-120 (1998). https://doi.org/10.1016/S0926-860X(98)00214-2 - L. Tang, D. Yamaguchi, B. Leita, V. Sage, N. Burke, and K. Chiang, The effects of oxidation-reduction treatment on the structure and activity of cobalt-based catalysts, Catal. Commun., 59, 166-169 (2015). https://doi.org/10.1016/j.catcom.2014.10.021
-
J. Okal and H. Kubicka, Influence of oxidation-reduction treatment on activity and selectivity of Re supported on
${\gamma}$ -alumina, Appl. Catal. A, 171, 351-359 (1998). https://doi.org/10.1016/S0926-860X(98)00105-7