DOI QR코드

DOI QR Code

UV/GAC 흡착산화 공법을 이용한 원자력 발전소 2차 계통 냉각수로부터 발생하는 에탄올 아민 함유 폐수처리

Treatment of Wastewater Containing Ethanolamine from Coolant of the Secondary System of Nuclear Power Plant by UV/GAC Adsorption Oxidation Method

  • 최민준 (강릉원주대학교 생명화학공학과) ;
  • 김한수 (강릉원주대학교 생명화학공학과)
  • Choi, Min Jun (Department of Biochemical Engineering, Gangnueng-Wonju National University) ;
  • Kim, Hansoo (Department of Biochemical Engineering, Gangnueng-Wonju National University)
  • 투고 : 2017.03.07
  • 심사 : 2017.04.17
  • 발행 : 2017.06.10

초록

원자력발전소 2차 계통수에 사용되는 에탄올아민이 포함된 오염수는 복수탈염설비의 이온교환수지에서 포집된다. 이온교환수지의 재생과정에서 에탄올아민과 다량의 이온성 물질이 포함된 강산성 폐수가 발생된다. 본 연구는 이온교환수지에서 발생하는 폐수를 처리하기 위해서 자외선 산화방법을 적용하였다. 산화방법은 흡착제를 함께 사용한 자외선 산화와 흡착제를 적용하지 않고 자외선 산화만 적용할 수 있는 장치를 개발하여 자외선 산화방법에서 흡착제가 폐수처리 성능에 미치는 영향을 파악하였다. 연구 결과는 입상활성탄을 흡착제로 적용한 UV/GAC산화공정은 pH 12.8에서 COD 제거 효율은 71.3%로 나타났다. 동일한 pH 조건에서 흡착제를 적용하지 않은 UV 산화공정보다 COD 제거 효율이 21.8% 높게 나타났다. T-N의 제거는 pH 12.8일 때 88.6%로 흡착제를 적용하지 않은 UV산화공정보다 18.0% 높게 나타났다. 이와 같은 결과는 입상활성탄이 에탄올아민을 고정시켜서, UV 램프에 의한 산화공정의 효율을 높이는 것으로 여겨진다. 따라서 UV/GAC 흡착산화공정이 에탄올아민 함유 폐수의 처리에 더 효율적이다.

Wastewater including ethanolamine used in the second generation of nuclear power plants is filtered out in the ion exchange resin of the condensate polishing plant. In the regeneration process of ion exchange resin, a strong acidic wastewater containing ethanolamine and a lager amount of ionic substances are released. In this study, the process involving UV oxidation part with or without absorbents was developed for treating wastewater released from the ionic exchange resin. The effect of adsorbents on the wastewater treatment was investigated by using UV oxidation system developed by us. As a result, the COD removal efficiency of UV/GAC process with the granular activated carbon (GAC) as an adsorbent was 71.3% at pH 12.8. The removal efficiency was 21.8% higher than that of the wastewater treated using UV oxidation process without any adsorbents at the same condition. The removal of T-N was 88.6% at pH 12.8 when using UV oxidation with the GAC absorbent, which was 18.0% higher than that of using the UV oxidation process without any absorbents. It is thought that ethanolamine adsorbed on the absorbent improved the efficiency of UV oxidation process. Therefore, the UV/GAC adsorption oxidation process can be more effective in treating wastewater containing ethanolamine than that of using the process without any absorbents.

키워드

참고문헌

  1. H. C. Lee, Treatment of wastewater containing ethanolamine in secondary system of nuclear power plant, Appl. Chem. Eng., 24, 38-43 (2013).
  2. S. C. Park, Y. H. Yang, J. H. Lee, H. G. Cho, D. H. Lee, and J. S. Choi, A Feasibility Study on Commercial Treatment Technology for CPP Regeneration Wastewater. Technical Report E12NS02, Korea Hydro and Nuclear Power (2013).
  3. Y. W. Jeong, D. H. Byun, H. Y. Lee, and D. H. Kim, Treatment of ethanolamine using electro-chemical decomposing system, Power Eng. (Korea Electric Power Technology, Inc.), 25, 92-99 (2014).
  4. J. Y. Lee, J. K. Lee, S. H. Uhm, and H. J. Lee, Electrochemical technologies: Water treatment, Appl. Chem. Eng., 24, 235-242 (2011).
  5. H. J. Jeong, A Study of Physicochemical and Ion Exchange Characteristics of ETA. MS Thesis, Soon Chun Hyang University, Asan, Korea (2006).
  6. J. W. Choi and H. S. Lee, A study on the decomposition of dissolved ozone and phenol using ozone/activated carbon process, Appl. Chem. Eng., 23, 490-495 (2012).
  7. H. D. Jeon, Advanced oxidation process with $TiO_2$ photocatalyst, J. Korean Soc. Environ. Eng., 16, 809-818 (1994).
  8. S. H. Kim, J. R. Lim, S. Y. Nam, and H. S. Shin, Air-stripping-UV irradiation-thermal hydrolysis for trichloroethylene removal, J. Korean Soc. Environ. Eng., 25, 1010-1015 (2003).
  9. J. G. Kang, S. G. Han, D. H. Yoo, S. Y. Park, and J. W. Gang, The Application of Neutron Activation Analysis to Identify the Characteristics of Catalyst to be Used in AOP, Research Report GOVP1200130852, The Ministry of Science and Technology, Korea (2001).
  10. C. R. Kim, Recovery of Ammonia in the Highly Concentrated Ammonia Wastewater by Steam and Air Stripping. MS Thesis, University of Ulsan, Ulsan, Korea (2013).
  11. Y. G. Gwag, Removal of Ammonia Nitrogen at High Concentration by Physicochemical Method, MS Thesis, Pukyong National University, Pusan, Korea (2005).
  12. J. Y. Park, Removal of Ethanolamine Using GAC-Catalyzed $O_3$ Oxidation. MS Thesis, Gwangju Institute of Science and Technology, Gwangju, Korea (2013).
  13. M. S. Elovitz and U. Gunten, Hydroxyl radical/ozone ratios during ozonation processes: 1. The Rct concept, Ozone Sci. Eng., 21, 239-260 (1999). https://doi.org/10.1080/01919519908547239
  14. T.-G. Lee and B.-H. Ku, A study of wastewater treatment for organic matters using electro coagulation oxidation system, J. Korean Soc. Water Sci. Technol., 18, 49-50 (2010).
  15. C. H. Jeong and H. R. Bae, A study on the removal of B.T.X. by UV photooxidation-activated carbon, J. Environ. Sci. Int., 13, 41-45 (2004). https://doi.org/10.5322/JES.2004.13.1.041
  16. H. E. Lee, Y. J. Kim, S. O. Park, Y. H. Sung, C. O. Park, H. J. Lee, M. Jang, and Y. J. Lee, Cyanide attenuation by granular activated carbon and UV-light. Econ. Environ. Geol., 44, 485-492 (2011). https://doi.org/10.9719/EEG.2011.44.6.485
  17. I. H. Lee, B. K. Park, D. C. Cho, H. K. Han, M. Hong, H. J. Yoo, D. J. Kim, I. S. Hwang, and H. J. Jeong, Development of Wastewater Treatment and Resin Regeneration Technology for Reduction of COD & N in NPP Effluent. Research Report 2008 RR-N-CO, The Ministry of Science and Technology, Korea (2008).