DOI QR코드

DOI QR Code

Immune Evasion Mechanism as a Guide for Immunotherapy in Head and Neck Cancer

두경부암에서 면역회피 기전과 면역항암제 치료

  • Chang, Hyun (Division of Hematology and Medical Oncology, Department of Internal Medicine, Catholic Kwandong University College of Medicine, International St. Mary's Hospital)
  • 장현 (가톨릭관동대학교 국제성모병원 혈액종양내과)
  • Received : 2017.05.05
  • Accepted : 2017.05.09
  • Published : 2017.05.30

Abstract

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer globally with high morbidity and mortality. Immune surveillance is well recognized as an important mechanism to prevent development or progression of HNSCC. HNSCC can escape the immune system through multiple mechanisms including development of tolerance in T cells and inhibition of T-cell-related pathways, generally referred to as checkpoint inhibitors. Recent clinical trials have demonstrated a clear advantage in advanced HNSCC patients treated with immune checkpoint blockade. Right at the front of the new era of immunotherapy, we will review current knowledge of immune escape mechanisms and clinical implication for HNSCC.

두경부 편평상피세포암은 전세계적으로 6번째로 흔하며 예후가 불량한 암종이다. 면역 감시는 두경부암의 발생과 진행을 억제하는 중요한 기전으로 알려져 있다. 두경부암세포는 면역 감시를 T세포의 관용을 유도하거나 체크포인트를 통한 T세포 기능을 억제하는 등의 방법으로 회피할 수 있다. 한편 진행성 두경부암 임상연구에서 체크포인트 억제제는 명확한 항종양효과를 입증하였다. 이처럼 면역항암제가 중요한 암치료 방법으로 떠오르는 이때에 본 종설은 두경부암의 면회회피 기전 및 임상적용근거에 대한 최근 지식을 정리하였다.

Keywords

References

  1. Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1-27.
  2. Bhatia S, Louie AD, Bhatia R, O'Donnell MR, Fung H, Kashyap A, et al. Solid cancers after bone marrow transplantation. J Clin Oncol. 2001;19:464-471. https://doi.org/10.1200/JCO.2001.19.2.464
  3. Wang CC, Palefsky JM. Human papillomavirus-related oropharyngeal cancer in the HIV-infected population. Oral Dis. 2016;22 Suppl 1:98-106. https://doi.org/10.1111/odi.12365
  4. Badoual C, Sandoval F, Pere H, Hans S, Gey A, Merillon N, et al. Better understanding tumor-host interaction in head and neck cancer to improve the design and development of immunotherapeutic strategies. Head Neck. 2010;32:946-958.
  5. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991-998. https://doi.org/10.1038/ni1102-991
  6. Kannan GS, Aquino-Lopez A, Lee DA. Natural killer cells in malignant hematology: A primer for the non-immunologist. Blood Rev. 2017;31:1-10.
  7. Duray A, Demoulin S, Hubert P, Delvenne P, Saussez S. Immune suppression in head and neck cancers: a review. Clin Dev Immunol. 2010;2010:701657.
  8. Concha-Benavente F, Srivastava R, Ferrone S, Ferris RL. Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral Oncol. 2016;58:52-58. https://doi.org/10.1016/j.oraloncology.2016.05.008
  9. Meissner M, Reichert TE, Kunkel M, Gooding W, Whiteside TL, Ferrone S, et al. Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin Cancer Res. 2005;11:2552-2560. https://doi.org/10.1158/1078-0432.CCR-04-2146
  10. Agazie YM, Hayman MJ. Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol Cell Biol. 2003;23:7875-7886. https://doi.org/10.1128/MCB.23.21.7875-7886.2003
  11. Dominguez C, Tsang KY, Palena C. Short-term EGFR blockade enhances immune-mediated cytotoxicity of EGFR mutant lung cancer cells: rationale for combination therapies. Cell Death Dis. 2016;7:e2380. https://doi.org/10.1038/cddis.2016.297
  12. Ferris RL, Whiteside TL, Ferrone S. Immune escape associated with functional defects in antigen-processing machinery in head and neck cancer. Clin Cancer Res. 2006;12:3890-3895. https://doi.org/10.1158/1078-0432.CCR-05-2750
  13. Srivastava RM, Trivedi S, Concha-Benavente F, Hyun-Bae J, Wang L, Seethala RR, et al. STAT1-Induced HLA Class I Upregulation Enhances Immunogenicity and Clinical Response to Anti-EGFR mAb Cetuximab Therapy in HNC Patients. Cancer Immunol Res. 2015;3:936-945. https://doi.org/10.1158/2326-6066.CIR-15-0053
  14. Pollack BP, Sapkota B, Cartee TV. Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes. Clin Cancer Res. 2011;17:4400-4413. https://doi.org/10.1158/1078-0432.CCR-10-3283
  15. Baruah P, Lee M, Odutoye T, Williamson P, Hyde N, Kaski JC, et al. Decreased levels of alternative co-stimulatory receptors OX40 and 4-1BB characterise T cells from head and neck cancer patients. Immunobiology. 2012;217:669-675. https://doi.org/10.1016/j.imbio.2011.11.005
  16. Hoos A. Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 2016;15:235-247. https://doi.org/10.1038/nrd.2015.35
  17. Honeychurch J, Cheadle EJ, Dovedi SJ, Illidge TM. Immuno-regulatory antibodies for the treatment of cancer. Expert Opin Biol Ther. 2015;15:787-801. https://doi.org/10.1517/14712598.2015.1036737
  18. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271-275. https://doi.org/10.1126/science.1160062
  19. Bour-Jordan H, Esensten JH, Martinez-Llordella M, Penaranda C, Stumpf M, Bluestone JA. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family. Immunol Rev. 2011;241:180-205. https://doi.org/10.1111/j.1600-065X.2011.01011.x
  20. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332:600-603. https://doi.org/10.1126/science.1202947
  21. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704. https://doi.org/10.1146/annurev.immunol.26.021607.090331
  22. Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front Immunol. 2016;7:550.
  23. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13:84-88. https://doi.org/10.1038/nm1517
  24. Concha-Benavente F, Srivastava RM, Trivedi S, Lei Y, Chandran U, Seethala RR, et al. Identification of the Cell-Intrinsic and -Extrinsic Pathways Downstream of EGFR and IFNgamma That Induce PD-L1 Expression in Head and Neck Cancer. Cancer Res. 2016;76:1031-1043. https://doi.org/10.1158/0008-5472.CAN-15-2001
  25. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492-499. https://doi.org/10.1038/ni.2035
  26. Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017;276:80-96. https://doi.org/10.1111/imr.12519
  27. Grosso JF, Goldberg MV, Getnet D, Bruno TC, Yen HR, Pyle KJ, et al. Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells. J Immunol. 2009;182:6659-6669. https://doi.org/10.4049/jimmunol.0804211
  28. Ngiow SF, Teng MW, Smyth MJ. Prospects for TIM3-Targeted Antitumor Immunotherapy. Cancer Res. 2011;71:6567-6571. https://doi.org/10.1158/0008-5472.CAN-11-1487
  29. da Silva IP, Gallois A, Jimenez-Baranda S, Khan S, Anderson AC, Kuchroo VK, et al. Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol Res. 2014;2:410-422. https://doi.org/10.1158/2326-6066.CIR-13-0171
  30. Jie HB, Gildener-Leapman N, Li J, Srivastava RM, Gibson SP, Whiteside TL, et al. Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. Br J Cancer. 2013;109:2629-2635. https://doi.org/10.1038/bjc.2013.645
  31. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207:2187-2194. https://doi.org/10.1084/jem.20100643
  32. Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MW, Smyth MJ. Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. Cancer Res. 2011;71:3540-3551. https://doi.org/10.1158/0008-5472.CAN-11-0096
  33. Leone P, De Re V, Vacca A, Dammacco F, Racanelli V. Cancer treatment and the KIR-HLA system: an overview. Clin Exp Med. 2017.
  34. Makkouk A, Chester C, Kohrt HE. Rationale for anti-CD137 cancer immunotherapy. Eur J Cancer. 2016;54:112-119. https://doi.org/10.1016/j.ejca.2015.09.026
  35. Lucido CT, Vermeer PD, Wieking BG, Vermeer DW, Lee JH. CD137 enhancement of HPV positive head and neck squamous cell carcinoma tumor clearance. Vaccines (Basel). 2014;2:841-853. https://doi.org/10.3390/vaccines2040841
  36. Bauman JE, Grandis JR. Targeting secondary immune responses to cetuximab: CD137 and the outside story. J Clin Invest. 2014;124:2371-2375. https://doi.org/10.1172/JCI76264
  37. Srivastava RM, Trivedi S, Concha-Benavente F, Gibson SP, Reeder C, Ferrone S, et al. CD137 Stimulation Enhances Cetuximab-Induced Natural Killer: Dendritic Cell Priming of Antitumor T-Cell Immunity in Patients with Head and Neck Cancer. Clin Cancer Res. 2017;23:707-716. https://doi.org/10.1158/1078-0432.CCR-16-0879
  38. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer. 2016;52:50-66. https://doi.org/10.1016/j.ejca.2015.08.021
  39. Vonderheide RH, Glennie MJ. Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res. 2013;19:1035-1043. https://doi.org/10.1158/1078-0432.CCR-12-2064
  40. Sathawane D, Kharat RS, Halder S, Roy S, Swami R, Patel R, et al. Monocyte CD40 expression in head and neck squamous cell carcinoma (HNSCC). Hum Immunol. 2013;74:1-5.