References
- Breiman, L. (2001), Random Forests, Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- Fernandez-Delgado. M. and Cernadas. E. (2014), Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?, Journal of Machine Learning Research, 15, 3133-3181.
- Gao, H., Chen, Y., Lee, K., Palsetia, D., and Choudhary, A. N. (2012), Towards Online Spam Filtering in Social Networks, In NDSS 12, 1-16.
- Jo, C. Y. (2011), A Semiotic Study for New Media-applied to the case for Social Network Service, Semiotic Inquiry, 30, 125-154.
- Joe, I. H. and Shim, H. T. (2009), A SVM-based Spam Filtering System for Short Message Service, The Korean Institute of Communications and Information Sciences, 34(9), 908-913.
- Kanaris, I., Kanaris, K., and Stamatatos, E. (2006), Spam detection using character n-grams, Hellenic conference on artificial intelligence, 3955, 95-104.
- Lee, H. N., Song, M. G., and Im, E. G. (2011a), A Study on Structuring Spam Short Message Service(SMS) filter, The Korean Institute of Communications and Information Sciences, 1072-1073.
- Lee, S. J. and Choi, D. J. (2011b), Personalized Mobile Junk Message Filtering System, The Journal of the Korea Contents Association, 11(12), 122-135. https://doi.org/10.5392/JKCA.2011.11.12.122
- Lee, S. W. (2010), Spam Filter by Using X2 Statistics and Support Vector Machines, The KIPS transactions, 17(3), 249-254.
- Oh, Y. H., Kim, H., Yoon, J. S., and Lee, J. S. (2014), Using Data Mining Techniques to Predict Win-Loss in Korean Professional Baseball Games, Journal of Korean Institute of Industrial Engineers, 40(1), 8-17. https://doi.org/10.7232/JKIIE.2014.40.1.008
- Quan, X., Liu, W., and Qiu, B. (2011), Term Weighting Schemes for Question Categorization, IEEE Transactions on Pattern Analysis and Machine Intelligence archive, 33(5), 1009-1021. https://doi.org/10.1109/TPAMI.2010.154
- Shannon, C. E. (2001), A mathematical theory of communication, ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3-55. https://doi.org/10.1145/584091.584093
- Soiraya, M., Thanalerdmongkol, S., and Chantrapornchai, C. (2012), Using a Data Mining Approach : Spam Detection on Facebook, International Journal of Computer Applications, 58(13), 26-31. https://doi.org/10.5120/9343-3660
- Stringhini, G., Kruegel, C., and Vigna G. (2010), Detecting spammers on social networks, Proceedings of the 26th Annual Computer Security Applications Conference, 1-9.
- Yang, C., Harkreader, R. C., and Gu, G. (2011), Die free or live hard? empirical evaluation and new design for fighting evolving twitter spammers, In International Workshop on Recent Advances in Intrusion Detection, 318-337.
- Yang, C., Harkreader, R. C., and Gu, G. (2013), Empirical evaluation and new design for fighting evolving Twitter spammers, IEEE Transactions on Information Forensics and Security, 8(8), 1280-1293. https://doi.org/10.1109/TIFS.2013.2267732
- Zhang, X., Li, Z., Zhu, S., and Liang, W. (2016), Detecting spam and promoting campaigns in Twitter, ACM Transactions on the Web (TWEB), 10(1), 4:1-28.
- Zheng, X., Zeng, Z., Chen, Z., Yu, Y., and Rong, C. (2015), Detecting spammers on social networks, Neurocomputing, 159, 27-34. https://doi.org/10.1016/j.neucom.2015.02.047