DOI QR코드

DOI QR Code

Effect of Martensite Fraction on the Tensile Properties of Dual-phase Steels Containing Micro-alloying Elements

미량합금 원소가 첨가된 2상 조직강의 인장 특성에 미치는 마르텐사이트 분율의 영향

  • Lim, Hyeon-Seok (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Ji-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 임현석 (서울과학기술대학교 신소재공학과) ;
  • 김지연 (서울과학기술대학교 신소재공학과) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Received : 2017.03.30
  • Accepted : 2017.04.10
  • Published : 2017.05.30

Abstract

In this study dual-phase steels with different ferrite grain size and martensite fraction were fabricated by varying micro-alloying elements and intercritical anneling temperatures, and then the tensile properties were investigated in terms of yield and tensile strengths, elongation, and yield ratio. The addition of micro-alloying elements reduced ferrite grain size, and the increased intercritial transformation tempeature increased the martensite fracton. The tensile test results showed that yield and tensile strengths of all the steel specimens increased with increasing the martensite fraction. However, the elongation and yield ratio were differently changed according to variations in the morphology and carbon content of martensite, ferrite grain size, and precipitates resulting from the addition of micro-alloying elements and intercritical annealing.

Keywords

References

  1. D. T. Llewellyin and D. J. Hillis : Ironmak. and Steelmak., 23 (1996) 471.
  2. A. Bag, K. K. Ray and E. S. Dwarakadasa : Metall. Mater. Trans. A., 30 (1999) 1193. https://doi.org/10.1007/s11661-999-0269-4
  3. R. G. Davies : Metall. Trans. A., 9 (1978) 671. https://doi.org/10.1007/BF02659924
  4. P. H. Chang and A. G. Preban : Acta Metall., 33 (1985) 897. https://doi.org/10.1016/0001-6160(85)90114-2
  5. ASTM : E112, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshocken (1996)
  6. T. Gladman, I. D. McIvor and F. B. Pickering : J. Iron. Steel. Inst., 209 (1971) 380
  7. C. Zener and J. H. Holloman : J. Appl. Phys., 15, (1944) 22 https://doi.org/10.1063/1.1707363
  8. T. Gladman : Proc. R. Soc., 294 (1966) 298 https://doi.org/10.1098/rspa.1966.0208
  9. K. B. Kang, O. Kwon, W. B. Lee and C. G. Park : Scr. Meter., 36 (1997) 1303 https://doi.org/10.1016/S1359-6462(96)00359-4
  10. S. S. Hansen, J. B. Vander Sande and M. Cohen : Metall. Trans. A., 11 (1980) 387 https://doi.org/10.1007/BF02654563
  11. S. Kim and S. Lee : Metall. and Mater. Trans. A., 31 (2000) 1753 https://doi.org/10.1007/s11661-998-0328-2
  12. M. Calcagnotto, Y. Adachi, D. Ponge and D. Raabe : Acta Mater., 59 (2011) 658 https://doi.org/10.1016/j.actamat.2010.10.002
  13. P. Movahed, S. Kolahgar, S. P. H. Marashi, M. Pouranvari and N. Parvin : Mater. Sci. Eng. A., 518 (2009) 1 https://doi.org/10.1016/j.msea.2009.05.046
  14. Y. S. Byun, I. S. Kim and S. J. Kim : Trans. Iron Steel Inst. Jpn., 24 (1984) 372 https://doi.org/10.2355/isijinternational1966.24.372
  15. N. K. Balliger and T. Gladman : Metal. Sci., 15 (1981) 95
  16. S. Sodjit and V. Uthaisangsuk : Mater. and Des. 41 (2012) 370 https://doi.org/10.1016/j.matdes.2012.05.010
  17. A. M. Sarosiek and W. S. Owen : Mater. Sci. Eng. 66 (1984) 13 https://doi.org/10.1016/0025-5416(84)90138-1
  18. A. Kumar., S. B. Singh and K. K. Ray : Mater. Sci. Eng. A., 474 (2008) 270 https://doi.org/10.1016/j.msea.2007.05.007
  19. G. Avramovic-Cingara, C. A. R. Saleh, M. K. Jain and D. S. Wilkinson : Metall. Mater. Trans. A., 40 (2009) 3117. https://doi.org/10.1007/s11661-009-0030-z
  20. T. S. Byun and I. S. Kim : J. Mater. Sci., 28 (1993) 2923 https://doi.org/10.1007/BF00354695
  21. J. W. Lee, S. J. Lee and B. C. De Cooman : Mater. Sci. Eng. A., 536 (2012) 231. https://doi.org/10.1016/j.msea.2012.01.003