DOI QR코드

DOI QR Code

Effect of Random Dopant Fluctuation Depending on the Ion Implantation for the Metal-Oxide-Semiconductor Field Effect Transistor

금속-산화막-반도체 전계효과 트랜지스터의 불순물 분포 변동 효과에 미치는 이온주입 공정의 영향

  • Park, Jae Hyun (Dept. of Semiconductor Systems Engineering, Korea University) ;
  • Chang, Tae-sig (Dept. of Semiconductor Systems Engineering, Korea University) ;
  • Kim, Minsuk (Dept. of Electrical Engineering, Korea University) ;
  • Woo, Sola (Dept. of Electrical Engineering, Korea University) ;
  • Kim, Sangsig (Dept. of Electrical Engineering, Korea University)
  • Received : 2017.03.24
  • Accepted : 2017.03.29
  • Published : 2017.03.31

Abstract

In this study the influence of the random dopant fluctuation (RDF) depending on the halo and LDD implantations for the metal-oxide-semiconductor field effect transistor is investigated through the 3D atomistic device simulation. For accuracy in calculation, the kinetic monte carlo method that models individual impurity atoms and defects in the device was applied to the atomistic simulation. It is found that halo implantation has the greater influence on RDF effects than LDD implantation; three-standard deviation of $V_{TH}$ and $I_{ON}$ induced by halo implantation is about 6.45 times and 2.46 times those of LDD implantation. The distributions of $V_{TH}$ and $I_{ON}$ are also displayed in the histograms with normal distribution curves.

본 연구에서는 금속-산화막-반도체 전계효과 트랜지스터의 불순물 분포변동 효과에 미치는 halo 및 LDD 이온주입 공정의 영향을 3차원 소자 시뮬레이션을 통하여 확인하였다. 정확한 시뮬레이션 계산을 위해 kinetic monte carlo 모델을 적용하여 불순물 입자와 결함 낱낱의 거동을 계산하는 원자단위 시뮬레이션을 수행하였다. 문턱전압 및 on-current의 산포를 통해 확인한 결과 halo 이온주입 공정이 LDD 이온주입 공정보다 문턱전압 산포의 경우 약 6.45배 그리고 on-current 산포의 경우 2.46배 더 큰 영향을 미치는 특성을 확인하였다. 그리고 문턱전압과 on-current 산포를 히스토그램으로 나타내어 그 산포를 정규분포로 확인하였다.

Keywords

References

  1. C. Mack, "Fifty years of Moore's law," IEEE Transactions on Semiconductor Manufacturing, vol. 24, no. 2, pp. 202-207, 2011. DOI : 10.1109/TSM.2010.2096437
  2. M. Jo, "The Extraction Method of LDD NMOSFET's Metallurgical Gate Channel Length," j.inst.Korean.electr.electron.eng, vol. 3, no. 1, pp. 118-125, 1999. DOI : 10.7471/ikeee.1999.3.1.118
  3. R. Sarpeshkar, J. Wyatt, N. Lu, and P. Gerber, "Mismatch sensitivity of a simultaneously latched CMOS sense amplifier," IEEE Journal of Solid-State Circuits, vol. 26, no. 10, pp. 1413-1422, 1991. DOI : 10.1109/4.90096
  4. C. Michael and M. Ismail, "Statistical modeling of device mismatch for analog MOS integrated circuits," Journal of Solid-State Circuits, vol. 27, no. 2, pp. 154-166, 1992. DOI : 10.1109/4.127338
  5. C. Shin, Variation-Aware Advanced CMOS Devices and SRAM, Springer, 2016. DOI : 10.1007/978-94-017-7597-7
  6. T. Mizuno, J. Okamura, and A. Toriumi, "Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFETs," IEEE Transactions on Electron Devices, vol. 41, no. 11. pp. 2216-2221, 1994. DOI : 10.1109/16.333844
  7. W. Lii, "Modeling of delay variability due to random dopant fluctuation in nano-scale CMOS inverter," Proceedings of International Conference on Information Science, Electronics and Electrical Engineering (ISEEE2014), 2014. DOI : 10.1109/InfoSEEE.2014.6948090
  8. K. Takeuchi, T. Tatsumi, and A. Furukawa, "Channel engineering for the reduction of random-dopant-placement-induced threshold voltage fluctuation," Proceedings of IEEE International Electron Devices Meeting (IEDM1997), 1997. DOI : 10.1109/IEDM.1997.650512
  9. Synopsys Inc., Sentaurus User's Manual (vol. 2016. 03.), Synopsys Inc., 2016.
  10. T. Ezaki, T. Ikezawa, and Masami Hane, "Investigation of realistic dopant fluctuation induced device characteristics variation for sub-100 nm CMOS by using atomistic 3D process/device simulator," Proceedings of IEEE International Electron Devices Meeting (IEDM2002), 2002. DOI : 10.1109/IEDM.2002.1175841