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Abstract

This paper proposes a fast patch-based de-blurring algorithm including kernel estimation based

on the angle between the edge and the blur direction. For de-blurring, image patches from the

most informative edges in the blurry image are used to estimate a kernel with low computational

cost. Moreover, the kernels of each patch are estimated based on the correlation between the

edge direction and the blur direction. This makes the final kernel more reliable and creates an

accurate latent image from the blurry image. The combination of directionally oriented kernel

estimation and patch-based de-blurring is faster and more accurate than existing state-of-the art

methods. Experimental results using various test images show that the proposed method achieves

its objectives: speed and accuracy.
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1. Introduction

Motion blur is a common artifact cause of

disappointing blurry images with inevitable

information loss. It occurs because imaging

sensors accumulate incoming light over a

certain period of time. Unwanted camera

movement during exposure makes the sensor

take several scenes within a frame, and objects

originally captured in designated pixels are

placed in unwanted pixels.

If motion blur is , it can be modeled as the

convolution of a latent sharp image with a blur

kernel [1], where the kernel draws the moving

trace of a sensor. Then, motion blur is

removed, in a process called de-blurring that

involves a deconvolution operation. We can

categorize deconvolution into two types by
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existence of a kernel. While in non-blind

deconvolution the kernel is provided to recover

the latent sharp image, in blind deconvolution,

the kernel is unknown and this is more

practical model in the real world; therefore we

focus on blind deconvolution. In this paper, we

focus and propose improvement on the blind

deconvolution problem of a

single image where both kernel and latent sharp

image are estimated from a blurred image.

Single image blind deconvolution is a well-known

ill-posed problem because the number of unknown

items (the latent sharp image and the kernel)

exceeds the number of given items (the blurry

image). Various studies have been performed to

address the problem of blind deconvolution for

de-blurring a blurred image. Although many

researches have tried to recover un-blurred images

from blurry ones, aspects of the problem remain

challenging. Lokhande et al. [2] have worked on

identification of blur parameters using analysis of

the frequency domain, and tried to reconstruct the

kernel using length and angle information. This

method assuming perfect linear kernel might not

perform well for natural images. Joshi et al. [3]

estimated the kernel using sharp edge

prediction, and tried to predict the ideal edge

by searching the local maximum or minimum

pixel intensities. This method did not achieve

the expected result for large blurs. Levin et al

[4-7] proposed an algorithm with image

statistics changes of derivative filters by blur,

and this provides good results only for box

kernels, which represent the characteristics of

perfect motion blurs. However, blur is not

always motion blurs and most motion blurs do

not have perfect box kernels. Fergus et al. [8]

tried to solve the problem by adopting a

Variational Bayesian approach to account for

uncertainties in the unknowns, allowing the

algorithm to find the kernel implied by a

distribution of probable images. Shan et al. [9]

usedasemi (MAP) approach to obtain a point

estimate of the unknown quantity based on

empirical data. They used a Gaussian prior for

natural images and edge re-weighting and

iterative likelihood updates for approximation of

the latent sharp image. However, this method

is not suitable for images that are sparse or

not Gaussian. Xu et al. [14] proposed an

efficient and high-quality kernel estimation

method based on using the spatial and iterative

support detection (ISD) kernel refinement and the,
TV-l1 deconvolution model, solved with a new

variable substitution scheme to robustly suppress

noise. Yuan et al. [10] proposed a different system

using a pair of images, a blurry image and a

noisy image, to reconstruct the latent sharp image.

Bae et al.[11] proposed a novel method that uses

mosaic image patches composed of the most

informative edges in the blurry image .They

reduce computational complexity using patches

smaller than the original image. That method

generates a small loss in accuracy compared with

other de-blurring algorithms due to the limited

information in the patches. Moreover, the accuracy

of the kernel estimation tends to be affected by

characteristics of the patches such as edge

direction. However, with progress in the accuracy

of patch selection and kernel estimation, this

method will be an interesting de-blurring approach

in the coming years.

In this paper, we propose a novel kernel

estimation method that uses the angles between

the edge directions and the blur directions, and we

show how this method is suitable for a

patch-based de-blurring algorithm.

The rest of the paper is organized as follows. In

Section 2, our motivation for this paper is

analyzed with examples. In Section 3, we describe

the overall algorithm and its core points. In

Section 4, we explain simulated and real data

experiments that show the effectiveness of our

proposed algorithm. In Section 5, we summarize

the proposed algorithm .
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2. Motivations

proposed method contains two ideas; the

patch-based method and the direction-awareness

regularization. In this section we describe other

works related to other various regularization

terms, and the motivations of the ideas for blur

kernel estimation.

2.1 Related work: the regularization term

We studied three representative methods with

simulation for comparison like; Fergus’s [8],

Xu’s [14] and Krishnan’s methods [23].

Fergus’s method in 2006 was earlier study for

blind image de-blurring, and its cost function

to estimate the blur kernel considered the

estimated image, the estimated kernel, and the

standard deviation of the gradient histogram of

the estimated image as shown below:

2

2

2
( ) ( ) ( )

( ) ( ) ( )log log log
( ) ( ) ( )q x q K q

q x q K q
p x p K p s

s
s

-

Ñ
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where p and q denotes sparsity priors,

respectively.<•>q(-) denotes the expectation with

respect toq(-)2, denotes the standard deviation

of the histogram on ∇x, K represents the

blur kernel, and x denotes the estimated sharp

image. The standard deviation is the only

regularization term, except the kernel and the

estimated image, and this was an efficient

regularization, while it is not widely used due

to low accuracy. Moreover, Fergus’s method

used the Richard-Lucy, now considered as an

old-fashioned algorithm, for image restoration.

Xu et al. proposed a kernel estimation method

using the spatial prior In the kernels estimation

step, the cost function is shown below:

2 2( ) sE k x k y kg= Ñ Ä - + (2)

where x represents the estimated sharp image, k

denotes the blur kernel. y denotes the input blurry

image, γ denotes the control parameter, and ∇xs

denotes the shock filtered gradient image [14].

The regularization term, our focus in this work, is

the second term, the square of the absolute,

values of the estimated kernel,2 2( ) sE k x k y kg= Ñ Ä - +

It prevents a continuous increasing of the

estimated kernel, but it does not give any

information on the ideal kernel.

Krishnan’s method proposed l1 norm regularization

of the kernel and a nove lregularization of the

estimated image, as described in the equation

below:

2 1
2 1

2

( , )
x

E x k x k y k
x

l j= Ä - + + (3)

where λ and φ denote the control parameter,

and x, k, and y denote the same variables as in

the previous method. The regularization terms

are the ratio of the l1 norm to the l2 norm on

the estimated image, and the l1 norm on the

estimated kernel. Its ratio increases with blur

level and provides information about the blur

level. However, the l1norm on the kernel gives

no information either like Fergus’s.

To overcome this shortcoming, we provide an

efficient regularization term for useful information

to the cost function. In this paper, we propose a

directional-derivatives kernel regularization term

for accurate kernel estimation described in

Section 2.3 .
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2.2 Patch-based method

The kernel estimation method we propose is

based on the angle between the edges and blur

directions. For the same blur direction, the

edges on the parallel angle cannot indicate blur

information than the edges on the orthogonal

angle. Therefore, according to the edge and

blur directions, we can reduce the kernel in

parallel angle case

In a patch-based algorithm, the region of the

patch is much smaller than the full image; thus

each patch may contain a partial object with

plentiful edge information. As a result, some

selected patches include the angle parallel to

the blur direction, and others do not have

enough information to create an accurate kernel.

This is insignificant when we reference the

full image and can uniformly estimate the blur

regardless of edge direction. Therefore, this

problem has been overlooked in full size image

de-blurring, but in the patch-based methods, it

is considered as an influential factor for kernel

estimation.   

Fig. 1. Example image [Top-left: blurred image with

direction 45◦,top-right: blurred imagewithdirection-45◦,

middle column: real kernel and two selected patches,

bottom column: estimated kernel with whole image and two

estimated kernels with each selected patch above.] The

kernel estimation is more accurate in the patch orthogonal

to the blur direction

Figure 1 shows the significance of our

motivation. The simulation image includes a

patch with evident direction on both edge and

intended blur. We have to pay attention to the

edge direction, the artificial blur direction and

their influence on the blurred images and the

estimated kernels. The estimated kernels at the

bottom of Figure 1 shows that the kernel is

accurately estimated only for the patches

orthogonal to the blur directions. In the

opposite case, many errors generate a severely

degraded result. Moreover, the kernels from the

orthogonal case patches result in an accurate

estimation compared to those from the original

full image.

Based on our research concerning orthogonal

edges, we concluded we must choose patches

with plentiful edge information and uniform

distribution of edge direction, to use directional

information for kernel estimation.

2.3 Directional derivatives-based kernel

regularization

As we explained in 2.2, we considered the

direction relationship between edge and blur,

and selected patches with enough edges in a

uniform direction. After that, we determined

how to use the directional information

effectively in the blur kernel estimation step.

Our proposal is a novel regularization motivated

by Krishnan [23] of a regularization function as

the ratio of the l1 norm and l2 norm among

the high frequencies of an image.

Regularization in mathematics, particularly in

the fields of machine learning and inverse

problems, refers to a process of introducing

additional information to solve an ill-posed

problem or prevent over-fitting [28]. Therefore,

a reliable regularization term can improve

estimation to achieve an ideal solution. Our

proposal of a direction-based novel regularization

is based on the relationship between blur and

edge directions, which is the core motivation of

this paper.
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Fig. 2. Example of calculating edge direction. Left-Top:

the example patch, Left-Bottom: its edge, Middle-Top: 0◦

-derivative image, Right-Top: 45◦-derivative image,

Middle-Bottom: 90◦-derivative image, Right-Bottom: 135◦

-derivative.

By introducing the proposed regularization into the

kernel estimation step, we aim to accelerate an

estimated kernel orthogonal to edge direction and

decelerate it parallel to edge direction. The

proposed regularization term is ∥∂∥ /∥∂
∥

where p represents the parallel to the edge and

q represents the opposite. However, p and q are

not orthogonal in practice, because each patch

contains various edges. (Detail description for 

selecting p and q is described in below 

Section2).  is the *-direction derivative 

image of a kernel. ‖-‖2 is the l2 norm 

operator.

We described the proposed regularization. The

flow is 1) edge direction, p and q selection 2)

directional derivatives of kernel, the proposed

regularization term.

1) Calculating edge direction

We estimate an edge direction by calculating

directional derivatives, as mentioned in Section 2.

Their strengths are calculated by the l2 norm

operation that sums the squares of each

directional derivative image. A high l2 norm score

represents the direction orthogonal to the edge,

and a low score represents the opposite. Figure

2 shows the examples of images and

calculating edge direction. This example patch

has edge directions between 90◦ and 135◦ shown

in its edge detected image.  Therefore, we 

expect high norm scores on their orthogonal 

directions, 0◦ and 45◦. The norm scores of 

directional derivatives are  1.8141*104 in 0◦,

1.7976*104 in 45◦, 1.4867*104 in 90◦, and 1.5989*104

in 135◦, respectively. According to their norm 

scores, p representing edge direction is 

selected as 90, because the derivative image 

along 90◦ has the minimum norm score and q 

representing blur direction is selected as 0◦. 

We want to make it clear that blur direction 

does not describe the actual motion of the blur; 

direction of blur as used in the kernel 

estimation step is more reliable than other 

definition.

2) Directional derivatives of the kernel

By calculating the edge direction mentioned in 1),

we decided which direction of the blur kernel

should be emphasized. The detailed description of

the word, ‘emphasized’, is that the blur kernel

along the designated direction influences an

estimated kernel in the next iteration. To do this,

we should assign a high regularization score on

the direction parallel to edge and a low score on

the orthogonal in the cost function of the kernel

estimation step.

In the proposed regularization term, we used the

l2-norm score on the directional derivatives of the

estimated kernel. It can represent the direction of

blur kernel: a low score denotes direction parallel

to the filter, and a high score denotes the

orthogonal direction as shown in Figure4. We are

convinced that the l2 norm scores can be used as

a regularization term because they vary with

regard to the blur direction; they are directly

proportional to the distance between the filter

direction and the blur kernel direction (the

distance between 137◦ and 0◦ is considered to

be 43◦, not 137◦; 0◦ can be considered

equivalent to 180◦).
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We selected the parallel direction p, and the

orthogonal direction q by using the l2 score of

patches. After that, the proposed regularization

term is directly proportional to the l2 norm of

the directional derivative along p and inversely

proportional to it along q, expressed as

Fig. 3. Artificial blur kernels along direction 0◦to170◦

withstepsize10◦.

Fig. 4. l2-norm scores with the directional filter.‖∂*‖
The x-axis represents the degree of the artificial blur

kernel, and the y-axis represents the l2 norm scores. For

the artificial blur kernels in Fig.3, we applied the directional

filters discussed in Section3. Along all directions, l2 norm

scores have the minimum score on the direction parallel to

the filter and the maximum on the orthogonal.

Fig. 5. Flow of the proposed algorithm. We selected informative patches and kernel estimation with iteration between sharp

patch estimation and blind kernel estimation. With the estimated kernels, we restore the sharp image

  . 
  

  . 
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3. Proposed Method

3.1 Overall algorithm

We assume the formulation model of a latent

sharp image x blurred by a kernel k along

with the addition of Gaussiani.i.d noise n.

This is representedas as Equation 4.

,y k x n= Ä + (4)

where y is the observed image and our goal is

to recover the unknown sharp image x and the

kernel k. In general, variables are inserted into

the cost function, and iterations are performed

to minimize the energy function in terms of x

and k.

In this paper, we use a patch-based

de-blurring method to estimate the kernel k,

and to recover the latent sharp image x.

Patch-based methods use the same formulation

model, however x, y, and k represent each

kernel and the final estimated kernel is applied

to the full-size observed image for recovery.

Figure 5 outlines our proposed method.

Section 3.2 explains the construction of edge

informative maps and the algorithm that finds a

set of patches that cover all possible

edge-orientation angles and is likely to be

informative in estimating image blur.

In Section 3.3, we describe the proposed

estimation method for the kernel with the novel

directionally-oriented step. In this step, we

describe how the directionally-oriented method is

used to estimate the kernel. In Section 3.3-1),

we show the method for approaching the latent

sharp image using the estimated kernel from

Section 3.3-2). Section 3.3-3) describes a

non-blind image restoration using the estimated

kernel from Sections 3.3 1) and 2).

Fig. 6. Representation of the direction four groups. [j = 0,

45, 90, 135]

3.2 Image Patch Selection

Our original patch selection objective was only to

reduce the amount of data without losing

accuracy. As mentioned in several papers, edge

information found in the observed blurry image

is useful for estimating the kernel. Several

important characteristics of edges, including the,

gradient magnitude, orientation angle, width, and

straightness [3-16], are widely used in

state-of-the-art blur-related methods. Traditional

de-blurring approaches apply masks on top of

the observed blurry image to build the kernel

estimation algorithm and focus on the most

informative region in the blurry image.

Therefore, the main objective of these

approaches is not only to reduce computational

complexity, but also to use informative edges.

Several previous methods require user

intervention to choose the optimum region,

which is thus determined by the human visual

system instead of mathematical calculation. A

region might look like the most informative

region when in fact it is not. Therefore, user

intervention reduces accuracy. On the contrary,

we determine the informative patches within

the blurry image using mathematical equations

for characteristics, edge strength [17] and

uniformity of edge direction.

Motivated by the structure of the edge strength

used in [17] for image quality assessment,

[ j = 0 ] 

 {θ | -22.5 ≤ θ <22.5 and
  157.5≤ θ <202.5}

[ j = 45 ] 
 {θ | 22.5 ≤ θ <67.5 and

  202.5≤ θ <247.5}

[ j = 90 ] 
 {θ | 67.5 ≤ θ <112.5 and

  247.5≤ θ <292.5}

[ j = 135 ] 
 {θ | 112.5 ≤ θ <157.5 and

  292.5≤ θ <337.5}
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we propose a directional edge strength map and

uniformity map described as follows.

Denote the observed blurry image as

1[ , , , , ] ,N
i Ny y y y R= ÎL L (5)

where i indexes the pixels and N denotes the

total number of pixels. The local pixel

regularity of the image along multiple directions

is measured by directional derivatives represented

by.

__ { | var[ ( )] },

_ arg max( )

m j
i u

i
j

i
j

E U i y T

m j y

h¬ ¶ <

= ¶ This denotes the directional derivative

at the ith pixel along the direction indexed by j.
We consider only four directions for simplicity

(Fig.6), namely,j=0,45,90 and 135. The directional

derivative

__ { | var[ ( )] },

_ arg max( )

m j
i u

i
j

i
j

E U i y T

m j y

h¬ ¶ <

= ¶ ,i=1,2,…, N are computed by

convolving y with the directional

high-passfilterF j,j=0,45,90,135,as described by

Equation(6):

0 45

90 135

0 0 0 0 0 0 0 3 0 0
0 3 0 3 0 0 0 0 10 0

1 1, ,0 10 0 10 0 3 0 0 0 3
16 16

0 3 0 3 0 0 10 0 0 0
0 0 0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 3 0 0
0 3 10 3 0 0 10 0 0 0

1 1,0 0 0 0 0 3 0 0 0 3
16 16

0 3 10 3 0 0 0 0 10 0
0 0 0 0 0 0 0 3 0 0

F F

F F

é ù é ù
ê ú ê ú-ê ú ê ú
ê ú ê ú= =- -
ê ú ê ú- -ê ú ê ú
ê ú ê ú-ë û ë û
é ù é
ê ú
ê ú
ê ú= = -
ê ú- - - -ê ú
ê ú -ë û

,

ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

(6)

The strength map and uniformity of edge

direction map are derived using the four

directional derivatives.

First, for the strength map, it should be noted

that regularity along the edge direction and

irregularity along its orthogonal direction together

imply the possibility of an edge. In other words,

edge strength is defined by two directions in the

diagonal and vertical-horizontal because we

assume that the edge directions are simplified

into four directions. This approach can

distinguish edges with a sharp pixel change and

the anisotropic structures of image edges.

The edge strength in the diagonal directions is

described as follows;

(0,90) 0 90_ ,
p

i i iE S y y= ¶ - ¶ (7) 

where p is introduced to nonlinearly rescale the

edg estrength. The l2 norm is used in this

paper. In the same way, the edge strength in

the vertical-horizontal direction is defined as

follows

(45,135) 45 135_ ,
p

i i iE S y y= ¶ - ¶
 (8)

The final edge strength map is determined

along the stronger direction like the human

visual system.

(0,90) (45,135)_ { | max[ _ , _ ] },i i sE S i E S E S T¬ >
(9)

where E_S represents the strong edge strength

points, and Ts is the threshold that is the total

mean in the full image.

Second, the uniformity of edge direction means

that the points of the edge are evenly

distributed along a similar direction; thus the

influence of each edge is no more powerful

than that of the other edges. Therefore, under

the uniformity condition, the blurring movement

of each point can be preserved enough to

estimate an accurate kernel. In the calculation

of the uniformity of edge direction, the

directional derivatives are as follows:

__ { | var[ ( )] },

_ arg max( )

m j
i u

i
j

i
j

E U i y T

m j y

h¬ ¶ <

= ¶ (10)
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where E_U represents points of uniformity, 
represents the neighboring pixels based on i 
with a size of 3 or 5 in this paper, Tu is the
threshold set to the total variance in the full

image, j is selected among the four

directions,[0,45,90,135],which has a maximum
__ { | var[ ( )] },

_ arg max( )

m j
i u

i
j

i
j

E U i y T

m j y

h¬ ¶ <

= ¶ value on pixel I. and var symbolizes

the variance operator. We derive the uniformity

of edge direction from the directional differences

between neigh boring pixels.

We merge the edge strength and the uniformity

maps into a final patch map with the between

the two map:

_ { | _ _ },patch map i E S E U¬ Ç (11)

where patch_map represents the candidate

points for patch windows in the observed

blurry image.

To create windows within the scattered points

on the patch map, we apply an improved

K-means clustering method with reduced

computation cost [18-22] that clusters the

scattered points as described in Figure 7. Due

to the clustering method and the process of the

final patch map, there is little increase in the

computational costs; however, we used the fast

K-means clustering method, which takes about

0.14seconds for K=9 [22].

With the kernel estimation in the next step, we

can reduce the computational cost by about

(number of patch*patch_size) / full_image_size,
which is around 1/10 or less.Patch size is

determined based on the kernel size; however,

it is varied by comparing the number of

elements in each cluster.

Fig. 7. Overview of the patch selection method, from left

to right an top to bottom: the observed blurry image, the

final patch map, the clustered patch map using K-means

clustering and the final selected patch marked with a red

rectangular window. We can see that the proposed method

selects the informative region with enough edges.

3.3 Blind Blur Kernel Estimation

Our kernel estimation approach is performed

with several selected patches, which means the

algorithm refers only the selected patches

instead of the whole image to reduce the

computational complexity.

Our blind kernel estimation is motivated by

Krishnan’s method [23], which proposed a new

type of image regularization requiring the

lowest cost for a true sharp image. We propose

an algorithm based on this and introduce a

directionally oriented approach on the kernel

estimation step.

Given the observed blurry, noisy input y, the

directional derivatives ,

__ { | var[ ( )] },

_ arg max( )

m j
i u

i
j

i
j

E U i y T

m j y

h¬ ¶ <

= ¶ , i = 1, 2,…, N are
computed by convolving y with the directional
high-pass filterFj,j=0,45,90,135 mentioned before.
In Section 3.2 we used i-notation as a pixel

number; however from here forward, we

consider i as the patch number. N represents

the number of patches. We express the cost

function for spatially invariant blurring as:

2 1 2
12, 1

2 2

min
i

i

pjN
j j

i i j qx k i j

kx
x k y k

x k
a b y j

=

é ù¶¶
ê ú¶ Ä -¶ + + +

¶ ¶ê úë û
åå

(12) 

where x and y represent the directional

derivatives along four directions of the un-known

sharp image and the observed blurry image,
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2 1 2
12, 1

2 2

min
i

i

pjN
j j

i i j qx k i j

kx
x k y k

x k
a b y j

=

é ù¶¶
ê ú¶ Ä -¶ + + +

¶ ¶ê úë û
åå




__ { | var[ ( )] },

_ arg max( )

m j
i u

i
j

i
j

E U i y T

m j y

h¬ ¶ <

= ¶
     

 and represent the directional

derivative of the ith selected patch along

j-directionwherej∈{0, 45, 90, 135}, and ∂*

represents the directional derivative kernel

along the individual direction of pi or qi, where

k describes the un-known kernel with k≥0, ∑k 

= 1. α, β, ψ, and φare scalar weights to

control the relative strength of regularization

terms, and the∥∥1 and ∥∥2 operators

represent l1 norm and l2 norm operations.

The cost function, Equation (12), consists of

four terms based on Krishnan’s method [23].

The first term takes into account the

formulation described in Equation (4)

representing the difference between the

estimated image with the estimated kernel and

the observed blurry-noisy image. It reaches its

minimum with an accurately estimated image

and kernel. The second term is the l1/l2

regularization of the x term. It encourages

scale-invariant sparsity in the reconstruction.

The third term is the regularization of the

kernel, which suppresses the noise in the

estimated kernel. The fourth term is proposed

in this paper: ∂ and ∂ are the directional

derivative kernels along the individual patch

directions pi and qi, where pi represents the

angle with the minimum edge strength and qi

is the angle with the maximum of the ith patch

in Equation(9).

With the non-convex cost function in Equation

(12), we search for the best combination of the

sharp image x and the kernel k. The search
starts with an initial x and k and then iteratively
alternates between x and k updates, with the
search algorithm reducing iterations and avoiding

local minima by introducing conventional efficient

minimization algorithms. 

The initial x and k are the observed blur image
as the initial x and the 3-by-3 matrix filled 

with the cross shape,[010;111;010],as the 

initial k, respectively.

1) Sharp Image x-Update

The sharp image restoration is based on

Krishnan’s method [23]. The cost function for

updating x is as below:

 
 (13)

With the presence of the regularization term

l1/l2, Equation(13) can be solved by a

minimization algorithm. We chose ISTA, the
iterative shrinkage-thresholding algorithm by

Beck [24]. ISTA can be considered an inverse

transform, which estimates a sharp image from

a blurry image and kernel. The basic

formulation of ISTA is as follows:

2

1
min

x
Ax b xa b- + (14)

 We can substitute k for A and y for b; k and
y, mentioned in Equation (13) and (14) for
solving Equation (13) using ISTA method. The

core difference exists in the second term, l1/l2

and l1. To solve Equation (13) using ISTA, the
l2 term is considered the constant dominator of

the regularizer. Therefore, the l2 term,∥x∥2 , is
calculated from the previous iteration and fixed

at one iteration. The ISTA step is used as the

inner iteration for updating x, and the outer
loop simply re-estimates the weighting by

updating the denominator∥x∥2 . The overall
algorithm is described in Algorithm 1and 2.

2 1
2, 1
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j j
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x k y
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Algorithm   1: x-Update Algorithm

Assume:   Kernel kfrompreviousk-update

                  Image x0frompreviousx-update
                  Regularization parameter α = 20

                  Maximum outer iterations M=2
                  Maximum inner iterations N=2
                  ISTA threshold t=0.001
1 for j = 0 to M-1 do

2     α’ = α∥xj∥2

3     xj+1 = ISTA(k, α’, xj,t,N)

4 end for

5 return Update imagexM  

Algorithm   2: ISTA

Assume:   Operator k, kernel
                  Regularization parameter α, Initial iterate x0

                  Observed image y,Thresholdt
                  Maximum iterations N
                  Soft shrinkage operator S*
1 for j=0toN-1do

2     v=xj–tkT(kxj-y)
3     xj+1=Sβt (v)j

4 end for

 5 return Output image xN  

*
1 0

sgn( ) : 0 0
1 0

( ) max( ,0) ( )t i i i
if v

v if v
if v

S v v t sgn vb b
- <

= =
>

= -
ì
í
î

2) Blur Kernel k-Update

The method used for updating the kernel is

based on the proposed directionally-oriented

method that uses the relationship between the

edge direction and the blur direction. This

relationship is used in the regularization term

of the cost function for the updating kernel. In

detail, the regularization term consists of two

variables: the kernel following the angle with

the strongest edge strength, and the kernel

following the angle with the weakest. The two

variables compose a fraction with the kernel on

the strong edge as the denominator and the

other goes to the numerator. On the way to the

optimal minimum of the cost function, the

algorithm tries to reach a smaller regularization

value by increasing the denominator, (the kernel

on the strong edge direction image), and

decreasing the numerator, (the kernel on the

weakest edge direction image).

Therefore the final kernel includes more

information in the strongest edge direction.

The cost function for updating k is described in
Equation(15).

 

2 2
12, 1

2

min
i

i

pN
j j

i i qx k i j

k
x k y k

k
a y j

=
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(15)
 

subject to the constraints k≥0and,∑iki = 1.∂    

and ∂  are the directional derivative kernels
along the individual patch directions pi and qi, 
wherepi represents the angle with the minimum

edge strength and qi is the angle with the

maximum of the ith patch. To recapitulate  

the patch-based method, the kernel estimation

considers not the whole image but N selected
patches. To prevent the denominator from

becoming zero, we replace the zero-denominator

with 1 max (∥∂ ∥2,1).

Minimizing the cost function to estimate the

blur kernel requires a different search algorithm

from the x-update. The iterative reweighted
least square (IRLS) and conjugate gradient

(CG) methods are generally used to update k in
the various de-blurring methods. During the

iteration, the IRLS with CG method approaches

the optimal kernel with updating weights from

the previous iteration, and the directional kernel

shown in Equation (15). The outer loop is

based on the CG method and the inner loop for

weight generation is based on the IRLS, as

described in Algorithms 3,4, and 5

  

  
 

  
 

  

 
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Algorithm 3: k-Update Algorithm

Assume: Kernel k from previous k-update

Image xfrompreviousx-update

Observed image y

Maximum outer iterations M1=2

1 for i = 0 to M1do

2 weights_k = ψ *l1(k)+φ*[l2(kp)/l2(kq)]

3 k_opt = kernel_optimization(k,x,y,weights_x,M2)

4 end for

5 return Update kernelk_opt

Algorithm 4: kernel_optimization

Assume: Kernel k frompreviousk-update

Image x from previous x-update

Observed image y

Maximum inner iterations M2=2

Weights from outer loop

weight_k
1 Ak = weight_generation(x,k,weight_k)

2 r0 = y–Ak

3 for iter = 1 to M2do

4 rho = (riter)
T*riter

5 if iter > 1 do

6 Βiter=rho/rho_prev

7 ziter=riter+Βiter*ziter-1

8 else ziter=r0

9 end if

10 weights_p=ψ*l1(k)+φ*[l2(kp)/l2(kq)]

11 Ap = weight_generation(x,p,weights_p)

12 Αiter=rho/[(Ap)
T*(Ap)]

13 kiter=kiter-1+Αiter*ziter

14 riter = riter-1-Αiter*Ap

15 rho_prev=rho

16 endfor

17 return kiter

Algorithm 5: weight_generation

Assume: Kernel k from previous k-update

Image xfrompreviousx-update

Weights from outer loop weight_p

1 cost = conv(conv(x,k),rot180(x))

2 final_cost = cost+weight_p*k

3 return final_cost

rot180(A) rotates the matrix A through 180

degrees

During kernel updating, the most important issue

is an excessive number of iterations which makes

a process slow. Therefore a multi-scale estimation

using a coarse-to-fine pyramid of image resolution

to reduce computational cost is applied to the

implementation [23]. It means that the kernel
size is gradually increased from initial to a

user-defined size. An initial kernel, as a coarse

level, is a 3-by-3 matrix filled with a cross

shape, kinit=[010;111;010]. We gradually increase

its size with a ratio of  until it reaches a

user-defined kernel size.

3) Image Restoration

In the final image restoration step, we have the

estimated kernel and the blurry image; thus the

original restoration problem is transformed into

a non-blind image deconvol-ution problem. In

this case, we find a target sharp image based

on the method of [27] because it is conceptually

simple and yields high quality results. The core

difference is that they use bi-directional filters

and we use four directional filters, in Section 2

like below:

2

1
min ( ) ( )

N
m

i iu i m
x k y y F

a
a

=

æ öÄ - + Äç ÷
è ø

å å
(16)

where x represents the target sharp image we
want to estimate, k describes the final

estimated kernel and y show the observed

blurry image. Fm is the directional derivatives

filter along the m-direction, m=0,45,90,135 
respectively.αcontrols regularization weights, used

as 1/4or1/3.

4. Simulation Results

Our method contains novel approaches to image

patch selection and kernel estimation. To show

the effectiveness of our method, we began with

a patch selection simulation. The second

simulation demonstrated the effectiveness of the
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kernel estimation by comparing the estimated

kernel and the expected kernel.

Additional simulations were conducted to show the

performance of our method on various images. We

implemented our method in MATLAB 2013 on an

Intel Core i7-3770 CPU with 16GB RAM on 64-bit

Windows 7. The comparison simulations used the

algorithms of Fergus, [8]1, Xu [14]2, Krishnan [23]3,

and Lin [30]4 their code are distributed for

educational research on the cited websites.

 
 
 

Fig. 8. Comparison between developers’ suggested

patches and the patch locations selected by the proposed

method: patches on the left images were suggested by the

developers and the patches on the right images were

selected by the proposed method. Their kernels were

calculated by Fergus’s method to compare the efficiency of

patch selection.

4.1 Simulation Results of the Patch Selection

Method

We performed two types of simulations: One

compares results between the patches suggested

by earlier developers and those selected by the

proposed method (Figure 8).

The second simulation shows the performance

of the patch selection method on various kinds

of test images (Figure 9).

In Figure 8, we compare one patch selected with

our method with Fergus’s patch [8] that ensures

best performance and estimated the kernels using

the method in [8] to unify kernel estimation. The

selected patches contained regions similar to the

suggested patches, and their kernels were also

similar. This indicates that proposed method

without human intervention preserved the

accuracy of kernel estimation.

The second simulation of the patch selection

method showed that the selected patches for

various test images can be used widely in

de-blurring simulations. There were no right

answers for the patch locations. However, we

considered the regions with information-rich

edges and unified edge directions as reliable

patch regions. Figure 9 shows that the

proposed patch selection gives credible results. 
The number of patches, N, can be fixed to
eight. However, N varies adaptively per image.

             

Fig. 9. Patch simulation. From top to bottom, building,

Roma and boat shown in [11]. The right sides of the

blurry images are k-means results of the patch maps,

and sub-images under them are the selected patches.
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4.2 Simulation Results of the Kernel

Estimation Method

We organized the simulated environment as

follows: the kernel estimation algorithm is the

modified variable, the image reconstruction

algorithm is the control variable, and the

estimated kernel and the estimated sharp image

are the dependent variables. We used x-update
and Krishnan’s method for image reconstruction

in both simulations, and Krishnan’s method fo

rkernel estimation [23] for comparison with the

proposed algorithm. We can prove the

effectiveness of the proposed kernel estimation

by comparing the estimated kernels and

reconstructed images. We did not include a patch

selection step to control all variables except the

kernel estimation algorithm. In Figure 12, the

first and the second rows of images were 

processed with the optimized parameters 

suggested by [23], and the parameters of 

the third image were hand-tuned by iterative 

simulation. Common environments are that 

the inner and outer loop iteration for 

x-update are 2, and the number of iteration 

between x and k updates is 21. The dependent 

variables are that the regularization parameters 

of the x-update are 190 in the first row, and

150 in the second row. Figure 12 shows that 

the proposed method proceeds in a way similar 

to Krishnan’s method, but it also shows that 

the results of the proposed method provided 

clearer images than Krishnan’s method.

For example, the text on the woman’s top in

the first row is clearer in the third .column

than in the second column. In the second row,

the result in the second column might look

clearer than the result in the third column;

however, the result in the second column

actually has more rising artifacts because of

immoderate enhancement near the edges . 
 Moreover, they evidently described that the 

proposed method could attenuate the kernel 

along edge direction: the kernel along 

vertical was removed in the proposed result.  

4.3 Simulation Results of the Proposed

Method

To demonstrate the efficiency of the proposed 

method in both of the above steps and as a 

whole, we simulated a blind image 

deconvolution with widely published test images 

from de-blurring studies and real-captured 

images to compare our results with several 

state-of-the-art methods: Fergus [8], Xu [14], 

Krishnan [23]. For the simulations, we used 

MATLAB codes or executable files distributed 

by the authors on their web sites and their 

parameters for each images were hand-tuned 

to produce the best results. Likewise, the 

kernel sizes of each image were fixed 

according to optimized results of the 

state-of-the-art methods. In case of [8], the 

number of non-blind deconvolution was set to 

20, the number of kernel estimation iteration 

was set to 'kernel_size / sqrt(2)'. In case of 

[14], they blocked the user-intervention to 

modify parameters. In case of [23], λ were 

fixed to 50, 90, 90 and 30 at first to fourth 

column images. φ was fixed to ‘kernel 

size*(3/13)’ as mentioned in that paper.  The 

number of iteration at coarsest level was 21. In 

case of the proposed method, α were 40, 70, 

70 and 50 at first to fourth column images. β 

was fixed to 1.3, ψ was fixed to ‘kernel size 

*(1/13)’, and φ was fixed to ‘kernel size 

*(2/13)’. The number of iteration at coarsest 

level was 21 same with [23].

In  Figure 13   we show the simulation results 

for four test images processed by the four 

different methods. They demonstrates that the 

proposed method reconstructs the observed

blurry images into sharp images with a level of

sharpness similar to that found with the

conventional methods. Advantages of the

proposed method are that the ringing artifacts

near edges are quite reduced, and the details of

objects are well preserved. With comparing to

Xu’s method, the results of the proposed method

look better at third and fourth images, however,
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the result images at first and second image look

worse than them. Therefore, we simulated the

objective evaluations with four methods in

Section.4.4 to verify the performance of them.

4.4 Simulation Results of the Proposed

Method With Artificially Blurred Images

To further demonstrate the performance of

de-blurring algorithms, we simulated with

artificially blurred images. With sharp test images

distributed by the Eastman Kodak Company5, we

applied artificial blur. Therefore, we could

measure objective results which need the original

and the comparison target images, such as peak

signal to noise ratio (PSNR) and structural

similarity (SSIM) [25] described in below.
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values of I1 and I2.  I1I2 draws the covariance of

I1 and I2. =
  and  =

  are two

variables that stabilize division with a weak

denominator, where L is the dynamic range of
the pixel values (2*bits), k1 is set to 0.01, and k2 

is set to 0. Moreover, we measured the

simulation times.

We constructed the simulation environments: the

test images were ‘baboon’, ‘cameraman’, ‘lena’

and the selected Kodak images numbered as ‘01’,

‘06’, ‘14’, ‘17’, ‘19’ and ‘24’, shown in Figure 10.

The artificial blurs shown in Figure 10 were

generated by the blur effects of MATLAB 2013
with the kernel size fixed to 35x35.

We implemented our methods and simulated in

MATLAB 2013 on an Intel Core i7-3770 CPU

with 16GB RAM on 64-bit Windows 7. Table 1

shows that the simulation results: PSNR, SSIM

scores and simulation times. Note that the

Fergus, Krishnan and the proposed method were

simulated on the MATLAB 2013 and Xu was

simulated on the C++ program which is faster

than the MATLAB language about 500 times

[29]. Because Xu et al. only distributed the
software as C++. Therefore we have to consider

the different simulation environment cause of

software. The number of patches of the proposed

algorithm were fixed as 4 on 512x512 and 6 on

768x512, respectively. Their patch size was

fixed as 100x100. The other methods used the

whole-image.

Table 1 described that the proposed method

achieved the high quality results with shortened

time. With regards to the accuracy, we

compared the PSNR and SSIM scores: the

proposed method averagely increased 138.41%,

106.67%, 102.75% and 121.66% in PSNR,

235.90%, 116.68%, 105.60% and 145.23% in

SSIM comparing to Fergus, Krishnan, Xu and

Lin’s methods respectively. The simulations of

‘kodim14’, ‘kodim17’ and ‘kodim24’ showed that

the Xu’s method had little higher accuracy than

the proposed. Because their kernels except

‘kodim17’ had Gaussian distribution whose

directions were uniformly allocated. In terms of

the speed, we expected the reduction about the

ratio of patches over whole image size and the

additional times for patch selection. The

processing times of the proposed method were

reduced to 4.05%, 32.76%, 1437.58% and 24.37%

(sum of processing times of proposed results /

sum of processing times of their results),

comparing to Fergus, Krishnan and Xu’s

methods, respectively. As mentioned before, if

we consider that Xu was implemented as the

C++, the ratio between Xu and the proposed

can be considered as 2.87 %.
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Methods

Images
Fergus
[8]

Krishn
an [23]

X u
[14]

L i n
[30]

Proposed

‘baboon’

512x512

PSNR(db
)

15.0145 17.7792 17.7270 17.1056 18.5988

SSIM 0.1559 0.4144 0.7101 0.3852 0.6338

Time (s) 663.051 135.003 2.783 150.318 33.1033

‘ camera
man’

512x512

PSNR(db
)

15.5470 23.5124 25.7040 21.6654 25.9918

SSIM 0.5550 0.8304 0.9352 0.8059 0.8902

Time (s) 950.155 109.871 2.767 150.445 33.4153

‘lena’

512x512

PSNR(db
)

14.5186 22.6284 22.1564 18.2089 22.7781

SSIM 0.3447 0.7241 0.7096 0.5261 0.7362

Time (s) 744.296 142.335 2.663 156.204 37.7519

‘kodim01’

768x512

PSNR(db
)

16.6264 21.6950 17.0920 20.6192 21.7410

SSIM 0.1943 0.6656 0.2896 0.5713 0.6940

Time (s) 1773.17 161.929 4.137 243.520 60.0938

‘kodim06’

768x512

PSNR(db
)

18.0404 20.3129 19.9185 15.1532 21.1447

SSIM 0.3688 0.4729 0.3942 0.2699 0.5738

Time (s) 1383.42 171.101 4.346 247.402 57.9542

‘kodim14’

768x512

PSNR(db
)

16.8533 20.3653 22.9692 18.8586 21.6834

SSIM 0.2492 0.5179 0.7281 0.4015 0.6792

Time (s) 1548.89 187.840 4.034 245.873 65.2706

‘kodim17’

512x768

PSNR(db
)

18.4991 23.5001 25.9530 20.4591 25.3070

SSIM 0.3666 0.7445 0.8812 0.5231 0.8285

Time (s) 1281.02 171.117 3.912 247.090 59.5454

‘kodim19’

512x768

PSNR(db
)

16.4461 19.4914 22.9791 19.2371 23.0145

SSIM 0.3604 0.7346 0.9316 0.8962 0.9512

Time (s) 1473.89 174.299 3.920 248.306 58.1726

‘kodim24’

768x512

PSNR(db
)

15.6670 21.7287 23.8021 16.1679 23.4940

SSIM 0.2673 0.6837 0.8158 0.2714 0.7669

Time (s) 1813.20 184.143 4.201 243.689 65.6450

Table 1. De-blurring results with various artificially degraded

images.

Fig. 10. test images and their artificial kernel used for

artificially de-blurred simulations described in Table 1:

‘baboon’, ‘cameraman’, ‘lena’, ‘kodim01’, ‘kodim06’,

‘kodim14’, ‘kodim17’, ‘kodim19’ and ‘kodim24’. Bottom line is

the artificial kernels applied to each images in sequence.

The proposed method consists of three steps:

patch selection, kernel estimation and non-blind

image restoration. Comparing to the other

method, we reduced the time for kernel

estimation by using a few selected patches and

maintained the time for non-blind image

restoration, because it used the whole image

and the estimated kernel. . Figure 11 shows

the proportion of the processing time, calculated

by the average of each steps on various

images.

Fig. 11. The proportion of the processing times: the patch

selection step, the kernel estimation step and the image

restoration step
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5. Conclusion

In this paper, we proposed a novel image

deconvolution method to remove blur from a

single image by minimizing errors caused by

unintended camera motion. Our main

contributions are an effective cost function of

the kernel estimation that accounts for its

directional correlation, and a reliable patch

selection to reduce computational complexity  
These two methods interact with other

traditional methods to improve restoration of

the observed blurry image.

In summary, the proposed algorithm first

selects patches based on edge strength and

edge uniformity along four directions. After

that, with selected patches as whole image, the

kernel estimation step and sharp image

restoration step are iteratively computed to find

an optimized solution pair. We introduce

directionally oriented kernel estimation using

directional derivatives from the patch selection

step. They are conjugated in the regularizer in

the cost function on the way to emphasize the

kernel direction orthogonal with the edge

direction. Our regularizer is based on the

finding that the blur direction orthogonal to the

edge direction is more valuable in the kernel

estimation than blur direction parallel to the

edge direction. After estimating the kernel, we

restore the whole blurry image with non-blind

image restoration step. Our proposed method

can successfully de-blur most blurry images.

Our simulation results showed that blurred

image, edge-information can be successfully

restored. Thus the proposed method makes it

possible to be used in many relevant

applications such as vision recognition, image

understanding, and video editing. Furthermore,

our patch selection method can be applied to

any other blind image deconvolution method.

Fig. 12. Simulation results of the kernel estimation step. The first column is the original blurry images; the second column

shows the result images and the kernels from Krishnan’s method; the third column shows the result images and kernels

from the proposed method; and the fourth column shows the difference between the images and kernels of the second

and third columns. The differences between the second and third are noticeable, and the proposed simulation results

looks better. [First row: mukta, image_size: 407x610, kernel_size: 35x35], [Second row: boat, image_size: 960x638,

kernel_size: 31x31]. [PSNR Comparison, first row:27.3694 db and 29.1749 db, second row: 28.5456 db and 29.2254 db] ,

[SSIM Comparison, first row: 0.8739 and 0.9114, second row: 0.8523 and 8894]
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Fig. 13. Simulation results. [First row: original blurry images, Second row: Krishnan’s method, Third row: Xu’s method,

Fourth row: Fergus’s method, Fifth row: Our method], [First column: summerhouse, image_size: 800x795, kernel_size: 51x51],

[Second column: roma, image_size: 800x533, kernel_size: 85x85], [Third column: street, image_size: 800x800, kernel_size:

65x65], [Fourth column: wheel, image_size: 800x533, kernel_size: 35x35].
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