DOI QR코드

DOI QR Code

Search Trend's Effects On Forecasting the Number of Outbound Passengers of the Incheon Airport

포탈의 검색 트렌드를 활용한 인천공항 출국자 수 예측 연구

  • Received : 2017.03.13
  • Accepted : 2017.03.29
  • Published : 2017.03.31

Abstract

Short-term prediction of the number of passengers at the airport is very essential for the efficient and stable operation of the airport. Here, to forecast the immigration of Incheon International Airport, we perform the predictive modeling of Korean and Chinese outbound travelers comprising most of immigration. We conduct the Granger Causality test between the number of outbound travelers and related search trend data to confirm the correlation. It is found that the forecasting with both "outbound travelers" and "search term trends" data outperforms the one only with "outbound travelers" data. This is because search activities are done before doing something and this study confirms that search trend data inherently possess the potential for prediction.

공항의 안정적인 운영을 위하여 승객의 단기예측은 매우 중요하다. 본 논문에서는 인천공항의 출입국자 예측을 위하여 출입국자의 대부분을 차지하는 한국인과 중국인의 출국자의 예측 모델링을 수행하였다. 예측 모델링 정확도 향상을 위해 네이버와 바이두 검색 트렌드 데이터를 활용하였다. 출국자 수들과 관련 검색 트렌드 데이터 간 Granger Causality 테스트를 수행하여 상관관계가 있음을 확인하였다. "출국자 수" 단독으로 예측하는 것보다 "출국자 수"와 "검색어 트렌드" 자료를 합하여 예측하는 것이 정확도가 향상됨을 알 수 있었다. 이는 검색이 어떤 일을 수행하기 전에 하는 행위이기 때문이고, 검색 트렌드 데이터 내에 태생적으로 예측 기재가 존재함을 본 연구를 통하여 확인할 수 있었다.

Keywords

References

  1. A Study on Forecasting the Demand for Air Demand, Report 11-1611000-002646-14, Ministry of Land, Transport and Marine Affairs, Dec. 2012
  2. Y. Kim, "Study on Low Cost Carrier Demand Forecasting Using Seasonal ARIMA Model," The Journal of Tourism Research, Vol.26, No.1, pp.3-25, 2014.
  3. S. Nam, "A Study on the Air Travel Demand Forecasting using Time-Series Model," Ph.D thesis, Korea Aerospace Univ. 2010
  4. A. Samagaio, M. Wolters, "Comparative analysis of government forecasts for Lisbon airport," Journal of Air Transport Management 16, pp. 213-217, 2010 DOI:10.1016/j.jairtraman.2009.09.002
  5. J. Yoon, N. Huh, S. Kim, H. Hur, "A Study on International Passenger and Freight Forecasting Using the Seasonal Multivariate Time Series Models," Journal of the Korean Statistical Society, Vol. 17 pp 473-481, 2010 DOI:10.5351/CKSS.2010.17.3.473
  6. S. Baik, S. KIM "Estimation of Air Travel Demand Models and Elasticities for Jeju-Mainland Domestic Routes," Journal of Korean Society of Transportation 26(1), Korean Society of Transportation, pp 51-63, 2008
  7. D.T. Duval, A. Schiff, "Effect of air services availability on international visitors to NewZealand," Journal of Air Transportation Management. 17 pp. 175-.180, 2011 DOI:10.1016/j.jairtraman.2010.12.006
  8. T. Grocshe, F. Rothlauf, A. Heinzl, "Gravity models for airline passenger volume estimation," Journal of Transportation Management 13 pp. 175-.183, 2007 DOI:10.1016/j.jairtraman.2007.02.001
  9. S. Kim, D. Shin, "Forecasting short-term air passenger demand using big data from search engine queries," Automation in Construction 70 pp. 98-108, 2016 DOI:10.1016/j.autcon.2016.06.009
  10. Johan Bollen, Huina Maoa, Xiaojun Zeng, "Twitter moods predict the stock market," Journal of Computational Science 2 pp. 1-8, 2011.DOI:10.1016/j.jocs.2010.12.007
  11. Naver Trend, http://ca.datalab.naver.com/ca/step1.naver
  12. Baidu Index, http://index.baidu.com
  13. Jerome T. Connor, R. Douglas Martin, L. E. Atlas, "Recurrent Neural Networks and Robust Time Series Prediction," IEEE Transactions on Neural Networks, Vol. 5, No. 2, March 1994.DOI:10.1109/72.279188
  14. "p-value", https://en.wikipedia.org/wiki/P-value
  15. Y.Choi, "Forecasting Accuracy of Tourism Demand : An Evaluation of Time Series Methods" Ph.D thesis, Kyungkee univ, 1997
  16. "Artificial Neural net," https://en.wikipedia.org/wiki/Artificial_neural_network
  17. Gang Leng, Girijesh Prasad, Thomas Martin McGinnity, "An on-line algorithm for creating self-organizing fuzzy neural networks," Neural Networks 17, 477-493, 2004. DOI:10.1016/j.neunet.2004.07.009
  18. Gang Leng, Thomas Martin McGinnity, Girijesh Prasad, "Design for Self-Organizing Fuzzy Neural Networks Based on Genetic Algorithms," IEEE Transactions on Fuzzy Systems, Vol. 14, No. 6, December 2006. DOI:10.1109/TFUZZ.2006.877361