DOI QR코드

DOI QR Code

ON SUFFICIENCY AND DUALITY FOR ROBUST OPTIMIZATION PROBLEMS INVOLVING (V, ρ)-INVEX FUNCTIONS

  • Kim, Moon Hee (Department of Refrigeration Engineering, Tongmyong University) ;
  • Kim, Gwi Soo (Department of Applied Mathematics, Pukyung National University)
  • Received : 2016.03.17
  • Accepted : 2016.12.26
  • Published : 2017.05.31

Abstract

In this paper, we formulate a sufficient optimality theorem for the robust optimization problem (UP) under (V, ${\rho}$)-invexity assumption. Moreover, we formulate a Mond-Weir type dual problem for the robust optimization problem (UP) and show that the weak and strong duality hold between the primal problems and the dual problems.

Keywords

References

  1. D. Bertsimas, D. Brown, Constructing uncertainty sets for robust linear optimization, Oper. Res. 57(2009), 1483-1495. https://doi.org/10.1287/opre.1080.0646
  2. A. Ben-Tal, A. Nemirovski, Robust-optimization-methodology and applications, Math. Program., Ser B 92(2002), 453-480. https://doi.org/10.1007/s101070100286
  3. A. Ben-Tal, A. Nemirovski, A selected topics in robust convex optimization, Math. Program., Ser B 112(2008), 125-158.
  4. D. Bertsimas, D. Pachamanova, M. Sim, Robust linear optimization under general norms, Oper. Res. Lett. 32(2004), 510-516. https://doi.org/10.1016/j.orl.2003.12.007
  5. A. Ben-Tal, L.E. Ghaoui, A. Nemirovski, Robust optimization, Princeton Series in Applied Mathematics, 2009.
  6. V. Jeyakumar, G. Li, G. M. Lee, A robust von Neumann minimax theorem for zero-sum games under bounded payoff uncertainty, Oper. Res. Lett. 39(2011), 109-114. https://doi.org/10.1016/j.orl.2011.02.007
  7. H. Kuk, G. M. Lee and D. S. Kim, Nonsmooth multiobjective programs with ($V,\;{\rho}$)-invexity, Indian Journal of Pure and Applied Mathematics 29 (1998), 405-412.
  8. G.M. Lee and M.H. Kim, On duality theorems for robust optimization problems, J. Chungcheong Math. Soc. 26(2013), 723-733. https://doi.org/10.14403/jcms.2013.26.4.723