DOI QR코드

DOI QR Code

Pseudoperonospora urticae Occurring on Urtica angustifolia in Korea

  • Choi, Young-Joon (Department of Biology, College of Natural Sciences, Kunsan National University) ;
  • Lee, Hyang Burm (Division of Food Technology, Biotechnology and Agrochemistry, Chonnam National University) ;
  • Shin, Hyeon-Dong (Division of Environmental Science and Ecological Engineering, Korea University)
  • Received : 2017.05.13
  • Accepted : 2017.05.22
  • Published : 2017.06.01

Abstract

The genus Pseudoperonospora (Peronosporales, Oomycota) comprises six accepted species, including Ps. cubensis, which causes downy mildew on many economically important cucurbitaceous crops, and Ps. humuli, which occurs on hops. During a survey of downy mildew flora in Korea, a previously unreported species of Pseudoperonospora was found on Urtica angustifolia. Based on molecular phylogenetic and morphological analyses, the causal agent was identified as Pseudoperonospora urticae. This is the first report of Pseudoperonospora urticae occurring on Urtica angustifolia in Korea.

Keywords

References

  1. Thines M, Choi YJ. Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology 2016;106:6-18. https://doi.org/10.1094/PHYTO-05-15-0127-RVW
  2. Cohen Y. Downy mildew of cucurbits. In: Spencer DM, editor. The downy mildews. London: Academic Press; 1981. p. 341-54.
  3. Lebeda A, Cohen Y. Cucurbit downy mildew (Pseudoperonospora cubensis)-biology, ecology, epidemiology, host-pathogen interaction and control. Eur J Plant Pathol 2011;129:157-92. https://doi.org/10.1007/s10658-010-9658-1
  4. Francis SM. Pseudoperonospora humuli. CMI Descr Pathog Fungi Bact 1983;769:1-2.
  5. Royle DJ, Kremheller HT. Downy mildew of the hop. In: Spencer DM, editor. The downy mildew. London: Academic Press; 1981. p. 395-419.
  6. Summers CF, Adair NL, Gent DH, McGrath MT, Smart CD. Pseudoperonospora cubensis and P. humuli detection using species-specific probes and high definition melt curve analysis. Can J Plant Pathol 2015;37:315-30. https://doi.org/10.1080/07060661.2015.1053989
  7. Kitner M, Lebeda A, Sharma R, Runge F, Dvorak P, Tahir A, Choi YJ, Sedlakova B, Thines M. Coincidence of virulence shifts and population genetic changes of Pseudoperonospora cubensis in the Czech Republic. Plant Pathol 2015;64:1461-70. https://doi.org/10.1111/ppa.12370
  8. Polat I, Baysal O, Mercati F, Kitner M, Cohen Y, Lebeda A, Carimi F. Characterization of Pseudoperonospora cubensis isolates from Europe and Asia using ISSR and SRAP molecular markers. Eur J Plant Pathol 2014;139:641-53. https://doi.org/10.1007/s10658-014-0420-y
  9. Quesada-Ocampo LM, Granke LL, Olsen J, Gutting HC, Runge F, Thines M, Lebeda A, Hausbeck MK. The genetic structure of Pseudoperonospora cubensis populations. Plant Dis 2012;96:1459-70. https://doi.org/10.1094/PDIS-11-11-0943-RE
  10. Savory EA, Granke LL, Quesada-Ocampo LM, Varbanova M, Hausbeck MK, Day B. The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol Plant Pathol 2011;12:217-26. https://doi.org/10.1111/j.1364-3703.2010.00670.x
  11. Mitchell MN, Ocamb CM, Grunwald NJ, Mancino LE, Gent DH. Genetic and pathogenic relatedness of Pseudoperonospora cubensis and P. humuli. Phytopathology 2011;101:805-18. https://doi.org/10.1094/PHYTO-10-10-0270
  12. Runge F, Choi YJ, Thines M. Phylogenetic investigations in the genus Pseudoperonospora reveal overlooked species and cryptic diversity in the P. cubensis species cluster. Eur J Plant Pathol 2011;129:135-46. https://doi.org/10.1007/s10658-010-9714-x
  13. Choi YJ, Hong SB, Shin HD. A re-consideration of Pseudoperonospora cubensis and P. humuli based on molecular and morphological data. Mycol Res 2005;109:841-8. https://doi.org/10.1017/S0953756205002534
  14. Shin HD, Choi YJ. A first check-list of Peronosporaceae from Korea. Mycotaxon 2003;86:249-67.
  15. Shin HD, Choi YJ. Peronosporaceae of Korea. Suwon: National Institute of Agricultural Science and Technology; 2006.
  16. Zhang H, Yan X, Jiang Y, Han Y, Zhou Y. The extraction, identification and quantification of hypoglycemic active ingredients from stinging nettle (Urtica angustifolia). Afr J Biotechnol 2011;10:9428-37. https://doi.org/10.5897/AJB10.1981
  17. Stepanova TA, Stusenko OV. Medicinal plants of the Russian Far East. Aust J Med Herb 2008;20:142-5.
  18. Salmon ES, Ware WM. The downy mildew of the hop and its epidemic occurrence in 1924. Ann Appl Biol 1925;12:121-51. https://doi.org/10.1111/j.1744-7348.1925.tb02260.x
  19. Waterhouse GM, Brothers MP. The taxonomy of Pseudoperonospora. Mycol Pap 1981;148:1-28.
  20. Constantinescu O. Notes on Pseudoperonospora. Mycotaxon 1985;24:301-11.
  21. Ito S. Mycological flora of Japan. Tokyo: Yokendo; 1936.
  22. Kochman J, Majewski T. Glonowce (Phycomycetes); Wroslikowe (Peronosporales). Warsaw: Panik Scientific Publishing House; 1970.
  23. Vanev SG, Dimitrova EG, Ilieva EI. Razred Peronosporales. Sofia: In the aedibus Academiae Scientiarum Bulgaricae; 1993.
  24. Ul'yanishchev VI, Osipyan LL, Kanchaveli LA, Akhundov TM. Peronosporovye Griby. In: Osipyan LL, editor. Erevan: Erevan University; 1985.
  25. Mazelaitis J, Staneviciene S. Gleivunai (Myxomycota), Peronosporieciai (Peronosporales). Vilnius: Science and Encyclopedia Publishing House; 1995.
  26. Yu Y. Flora fungorum sinicorum Vol. 6: Peronosporales. Beijing: Science Press; 1998.
  27. Choi YJ, Klosterman SJ, Kummer V, Voglmayr H, Shin HD, Thines M. Multi-locus tree and species tree approaches toward resolving a complex clade of downy mildews (Straminipila, Oomycota), including pathogens of beet and spinach. Mol Phylogenet Evol 2015;86:24-34. https://doi.org/10.1016/j.ympev.2015.03.003
  28. Choi YJ, Beakes G, Glockling S, Kruse J, Nam B, Nigrelli L, Ploch S, Shin HD, Shivas RG, Telle S, et al. Towards a universal barcode of oomycetes - a comparison of the cox1 and cox2 loci. Mol Ecol Resour 2015;15:1275-88. https://doi.org/10.1111/1755-0998.12398
  29. Katoh K, Standley DM. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 2013;30:772-80. https://doi.org/10.1093/molbev/mst010
  30. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  31. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688-90. https://doi.org/10.1093/bioinformatics/btl446
  32. Farr DF, Rossman AY. Fungal databases, U.S. National Fungus Collections, ARS, USDA [Internet]. Beltsville: Systematic Mycology and Microbiology Laboratory; 2016 [cited 2016 Jan 24]. Available from: http://nt.ars-grin.gov/fungaldatabases/.
  33. Gannibal PB, Gasich EL, Berestetskiy AO, Gagkaeva TY, Khlopunova LB, Bilder IV, Levitin MM, Kolombet LV. Materials to the study of micromycetes of weeds and wild herbaceous plants in the south of Russian Far East (Primorie and Khabarovsk territories). Nov Sist Nizs Rast 2010;44:105-17.