DOI QR코드

DOI QR Code

Train Topology Discovery Protocol(TTDP) over Dual-Band WLAN-Based Train Communication Network

이중 무선랜 기반 차량 통신망에서의 열차 토폴러지 구성 프로토콜(TTDP)

  • Kang, Shinkwang (Inha University Department of Communication and Information Engineering) ;
  • Park, Jaehyun (Inha University Department of Communication and Information Engineering)
  • Received : 2017.02.28
  • Accepted : 2017.05.17
  • Published : 2017.05.31

Abstract

In Train Control Network(TCN), to support advanced services beyond control applications, it was revised to support high speed ethernet as IEC 61375-2-5(ETB) and IEC 61375-3-4(ECN). And Train Topology Discovery Protocol(TTDP) was included by which train-consist can be automatically configured. Meanwhile, to adopt wireless LAN as an next onboard network, TTDP need to be modified to reflect the characteristics of WLAN. This paper proposed a TTDP for WLAN using transmission power control and the number of HELLO-ACK handshake. And it determined whether the TTDP executed using the two WLAN interfaces having different bandwidths is correct or not. The proposed TTDP can allow to reduce interference from other nodes. For evaluation of performance of TTDP, NS-2 was used. The evaluation result shows the high reliability of the TTDP in wireless environment.

열차제어네트워크(TCN)는 현재 단순 제어 기능을 넘어 멀티미디어 등 승객 서비스를 지원하기 위하여 이더넷(Ethernet)을 지원할 수 있어야 한다. 그래서 최근 International Electronical Committee(IEC)는 기존의 TCN 표준인 IEC 61375를 개정하여 Ethernet Train Backbone(ETB), Ethernet Consist Network(ECN)를 포함하였다. 특히 ETB에서는 열차 구성이 자동으로 되는 열차 차량 가변편성 통신규약(TTDP)이 포함되었다. 한편 차세대 온 보드 네트워크로서 무선랜을 사용할 경우, TTDP는 무선 통신의 특성에 맞도록 수정되어야 한다. 본 논문에서는 송신전력을 제어하며 RSS 값과 HELLO 프레임에 대한 ACK 프레임의 수신 횟수를 이용하여 이웃 노드를 찾는 무선 TTDP를 제안한다. 그리고 대역폭이 다른 두 무선 랜 인터페이스를 사용하여 실행된 TTDP의 옳고 그름의 유무를 판정한다. 제안된 TTDP는 불필요한 다른 노드와의 간섭을 줄일 수 있도록 한다. 성능평가를 위해 무선 네트워크 시뮬레이션에서 가장 많이 쓰이는 NS-2를 사용하였다. 평가 결과, 제안된 TTDP가 무선에서도 높은 신뢰도를 보였다.

Keywords

References

  1. H. Kirrmann and P. A. Zuber, "IEC/IEEE train communication nework," IEEE J. & Mag., vol. 21, no. 2, pp. 81-92, Aug. 2002.
  2. IEC 61375-1 Standard, Train Communication Network(TCN), 1999.
  3. IEC 61375-2-5 Standard, Ethernet Train Backbone(ETB), 2014.
  4. IEC 61375-3-4 Standard, Ethernet Consist Network(ECN), 2013.
  5. H. Hwang, J. Kim, K. W. Lee, and J. H. Yun, "Analysis of network topology for distributed control system in railroad trains," J. Inst. Electron. and Inf. Eng., vol. 52, no. 10, pp. 21-29, 2015. https://doi.org/10.5573/ieie.2015.52.10.021
  6. J. Kim, J. Park, Y. Oh, and H. Hwang, "Reliability analysis of train Ethernet backbone," The Trans. KIEE, vol. 62, no. 3, pp. 414-416, 2013.
  7. J. Y. Heo, K. M. Lee, and H. C. Hwang, "Train wireless backbone for train coupling and uncoupling automatically," in Proc. KICS Int. Conf. 2015, pp. 943-944, Jeju Island, Korea, Jun. 2015.
  8. N. P. M. H. Salem, and A. M. Haimovich, "Effect of mac type and speed on neighbor discovery in wireless train networks," in Proc. CISS. Conf. 2015, pp. 1-5, Baltimore, USA, 2015.
  9. K. Kim, S. K. Lee, J. Jung, S. Yoo, and H. Kim, "Indoor wi-fi localization with LOS/NLOS determination scheme using dual-band AP," J. KICS, vol. 40, no. 8, pp. 1643-1654, 2015. https://doi.org/10.7840/kics.2015.40.8.1643
  10. D. Ahn and R. Ha, "Indoor localization methodology based on smart phone in home environment," J. KICS, vol. 39C, no. 4, pp. 315-325, 2014. https://doi.org/10.7840/kics.2014.39C.4.315
  11. J. Lee, S. R. Lee, and S.-C. Kim, "Analysis of localization scheme for ship application using received signal strength," J. KICS, vol. 39C, no. 8, pp. 643-650, 2014. https://doi.org/10.7840/kics.2014.39C.8.643
  12. K. Fall and K. Varadhan, The ns Manual (2011), Retrieved Feb., 16, 2017, from www.isi.edu/nsnam/ns/ns-documentation.html/
  13. Z. Wu, Introduce ricean fading to produce probabilistic link error, Retrieved Feb., 16, 2017, from http://www.winlab.rutgers.edu/-zhibinwu/html/ns_fading_error.html