References
- A. S. Kim, H. S, Han, K. Y. Bae, and D. K. Sung, "Wind power forecasting based support vector machine for a large-scale wind farm in jeju island," in Proc. KICS Int. Conf. Commun., pp. 11-12, Kangwon, Korea, Jan. 2016.
- A. M. Foley, P. G. Leahy, and E. J. McKeogh, "Wind power forecasting & prediction method," IEEE, 9th Int. Conf. Environ. and Electrical Eng., pp. 16-19, May 2010.
- I. Y. Seo, B. N. Ha, S. O. Kim, W. N. Koong, D. W. Seo, and S. J. Kim, "Short term wind power prediction using wavelet transform and ARIMA," J. Energy and Power Eng., pp. 1786-1790, Jun. 2012.
- K. Parks and Y. H. Wan, Wind energy forecasting : A collaboration of the national center for atmospheric research(NCAR) and xcel energy, NREL/SR-5500-52233, Oct. 2011.
- Y. Y. Hong, T. H. Yu, and C. Y. Liu, "Hour-Ahead wind speed and power forecasting using empirical mode decomposition," Energies, vol. 6, no. 12, pp. 6137-6152, Jun. 2013. https://doi.org/10.3390/en6126137
- G. Sideratos and N. Hatziargyriou, "An advanced statistical method for wind power forecasting," IEEE Trans. Power Syst., vol. 22, no. 1, pp. 258-265, Feb. 2007. https://doi.org/10.1109/TPWRS.2006.889078
- M. Negnevitsky and C. Potter, "Innovative short-term wind generation prediction techniques," IEEE Power Syst. Conf. and Exposition, pp. 60-65, 2006.
- T. El-Fouly, E. El-Saadany, and M Salama, "Grey predictor for wind energy conversion systems output power prediction," IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1450-1452. Aug. 2006. https://doi.org/10.1109/TPWRS.2006.879246
- J. Palomares-Salas, J. Rosa, J. Ramiro, J. Melgar, A. aguera, and A. Moreno, "ARIMA vs. Neural networks for wind speed forecasting," CIMSA 2009 - Int. Conf. Computational Intell. for Measurement Syst. and Appl., pp. 129-133, 2009.
- I. Damousis, M. Alexiadis, J. Theocharis, and P. Dokopoulos, "A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation," IEEE Trans. Energy Conversion, vol. 19, no. 2, pp. 352-361, Jul. 2008.
- M. G. Choi, H. G, Lee, and S. C. Lee, "Evil-twin detection scheme using SVM with multi-factors," J. KICS, vol. 40, no. 2, pp. 334-348, Feb. 2015. https://doi.org/10.7840/kics.2015.40.2.334
- K. Kim, Y. Park, J. Park, K. Ko, and J. Huh, "Feasibility study on wind power forecasting using MOS forecasting result of KMA," JKSES, vol. 30, no. 2, Feb. 2010.
- Y. Ho. Park, K. B. Kim, S. Y. Her, Y. M. Lee, and J. C. Huh, "A study on the wind data analysis and wind speed forecasting in Jeju area," J. Korean Solar Energy Soc., vol. 30, no. 6, 2010.
- D. H. Shin, K. K. An, S. C. Choi, and H. K. Choi, "Malicious traffic detection using K-means," J. KICS, vol. 41, no. 2, pp. 277-284, Feb. 2016. https://doi.org/10.7840/kics.2016.41.2.277
- Y. I. Kim, H. Y. Jo, and Y. J. Park, "A method of nu-SVR learning with a set of basis functions," KIIS, vol. 13, no. 3, pp. 316-321, Jun. 2003.
- J. Han and M. Kamber, Data Mining Concepts and Techniques, p. 172, 2006.
- C. G. Park, "Prediction of software development cost using support vector regression," The Korean Operations Res. and Management Sci. Soc., vol. 23, no. 2, pp. 75-91, Nov. 2006.
- R. J. Hyndman and A. B. Koehler, "Another look at measures of forecast accuracy," Int. J. Forecasting, vol. 22, no. 4, pp. 679-688, 2006. https://doi.org/10.1016/j.ijforecast.2006.03.001
Cited by
- K-평균 군집화 알고리즘 및 딥러닝 기반 군중 집계를 이용한 전염병 확진자 접촉 가능성 여부 판단 모니터링 시스템 제안 vol.9, pp.3, 2017, https://doi.org/10.30693/smj.2020.9.3.122