DOI QR코드

DOI QR Code

무선 네트워크에서 파이프라인 네트워크 코딩 기반 메시지 및 노드 인증

PNC(Pipeline Network Coding)-Based Message and Node Authentication in Wireless Networks

  • 투고 : 2017.02.02
  • 심사 : 2017.05.17
  • 발행 : 2017.05.31

초록

본 논문에서는 무선 네트워크 환경에서 효율적인 데이터 전달을 위한 파이프라인 네트워크 코딩(Pipeline Network Coding) 기법과 데이터의 무결성을 검증하기 위한 데이터 인증 기법, 가상 송신자에 대한 노드 인증 기법을 제안한다. 파이프라인 네트워크 코딩 기법은 네트워크 코딩을 수행하는 중계 노드가 송신자 대신 데이터를 전달함으로써 전체적인 네트워크 성능을 향상시키는 기법이다. 그러나 네트워크 코딩은 악의적인 공격자가 데이터를 위 변조하여 네트워크에 주입하는 공격인 오염 공격(pollution attack)에 취약하다. 이를 방어하기 위해 HMAC(Hash-based Message Authentication Code)을 사용한다. 이때 데이터 인증에 사용되는 태그를 생성하기 위해서는 인증을 수행하는 노드들에게 키를 분배해야한다. 키 분배에 따른 오버헤드를 최소화하기 위해 해쉬 체인을 적용하였다. 가상 송신자에 대한 인증 기법으로는 null 벡터를 사용한다. 최종적으로 제안 기법에 대한 안전성과 복잡도를 분석하고, 시뮬레이션을 통해 성능을 분석하였다.

In this paper, we propose a pipeline network coding (PNC) scheme for efficient data transmission in wireless networks, a data authentication scheme for verifying the integrity of data, and a node authentication scheme for a virtual source. PNC is a technique that improves the overall network performance by relaying data such that the relay node performing network coding transmits to the sender instead. However, network coding is vulnerable to a pollution attack, which is an attack by a malicious attacker to inject modified data into the network. To prevent this, hash-based message authentication code (HMAC) is used. For this purpose, in order to generate a tag used for data authentication, a key must be distributed to the nodes performing authentication. We applied a hash chain to minimize the overhead of key distribution. A null vector is used as the authentication scheme for the virtual source. Finally, we analyze the safety and complexity of the proposed scheme and show he performance through simulation.

키워드

참고문헌

  1. R. Ahlswede, N. Cai, S. Li, and R. Yeung, "Network information flow," Inf. Theory, vol. 46, no. 4, pp. 1204-1216, Jul. 2000. https://doi.org/10.1109/18.850663
  2. T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, "A random linear network coding approach to multicast," Inf. Theory, vol. 52, no. 10, pp. 4413-4430, Oct. 2003.
  3. A. K. Haddad and R. H. Riedi, "Bounds on the benefit of network coding for wireless multicast and unicast," IEEE Trans. Mob. Comput., vol. 13, no. 1, pp. 102-115, Jan. 2014. https://doi.org/10.1109/TMC.2012.234
  4. K. H. Lee and J. H. Kim, "Random linear network coding to improve reliability in the satellite communication," J. KICS, vol. 38B, no. 9, pp. 700-706, Sept. 2013. https://doi.org/10.7840/kics.2013.38B.9.700
  5. X. Yang, X. Tao, E. Dutkiewicz, E. X. Huang, Y. J. Guo, and Q. Cui, "Energy-efficient distributed data storage for wireless sensor networks based on compressed sensing and network coding," IEEE Trans. Wirel. Commun., vol. 12, no. 10, pp. 5087-5099, Oct. 2013. https://doi.org/10.1109/TWC.2013.090313.121804
  6. D. H. Lee, W. H. Lee, S. M. Kang, and H. Y. Hwang, "Frequency allocation and path selection scheme in underlay cognitive radio networks using network coding," J. KICS, vol. 40, no. 12, pp. 2372-2380, Dec. 2015. https://doi.org/10.7840/kics.2015.40.12.2372
  7. P. Li, S. Guo, S. Yu, and A. V. Vasilakos, "Reliable multicast with pipelined network coding using opportunistic feeding and routing," IEEE Trans. Parall. Distrib. Syst., vol. 25, no. 12, pp. 3264-3273, Dec. 2014. https://doi.org/10.1109/TPDS.2013.2297105
  8. S. Chachulski, M. Jennings, S. Katti, and D. Katabi, "Trading structure for randomness in wireless opportunistic routing," in Proc. ACM SIGCOMM, pp. 169-180, 2007.
  9. R. Punnoose, P. Nikitin, and D. Stancil, "Efficient simulation of ricean fading within a packet simulator," in Proc. IEEE 52nd Veh. Technol. Conf., pp. 764-767, 2000.
  10. E. Kehdi, et. al., "Null keys: Limiting malicious attacks via null space properties of network coding," in Proc. Infocom, pp. 1224-1232, Apr. 2009.
  11. A. Newell and C. Nita-Rotaru, "Split null keys: A null space based defense for pollution attacks in wireless network coding," in Proc. SECON, pp. 479-487, 2012.
  12. C. Chi, J. Tao, and Z. Qian, "TESLA-Based homomorphic MAC for authentication in P2P system for live streaming with network coding," IEEE J. Sel. Areas in Commun., vol. 31, no. 9, pp. 291-298, Sept. 2013. https://doi.org/10.1109/JSAC.2013.SUP.0513026
  13. Z. Rongfei, J. Yixin, L. Chuang, F. Yanfei, and S. S. Xuemin, "A distributed Fault/Intrusion-Tolerant sensor data storage scheme based on network coding and homomorphic fingerprinting," IEEE Trans. Parall. Distrib. Syst., vol. 23, no. 10, pp. 1819-1830, Oct. 2012. https://doi.org/10.1109/TPDS.2011.294
  14. X. Wu, Y. Xu, C. Yuen, and L. Xiang, "A tag encoding scheme against pollution attack to linear network coding," IEEE Trans. Parall. Distrib. Syst., vol. 25, no. 1, pp. 33-42, Jan. 2014. https://doi.org/10.1109/TPDS.2013.24
  15. L. Lamport, "Password authentication with insecure communication," Commun. ACM, vol. 24, no. 11, pp. 770-772, Nov. 1981. https://doi.org/10.1145/358790.358797
  16. J. Liu, et. al., "Efficient multicast key distribution using HOWP-based dynamic group access structures," IEEE Trans. Computers, vol. 62, no. 8, Aug. 2013.