Abstract
Currently, the market of digital contents such as e-books, cartoons and webtoons is growing up, but the copyrights infringement are serious issue due to their distribution through illegal ways. However, the technologies for copyright protection are not developed enough. Therefore, in this paper, we propose the NSS-based publication classification method for copyright protection. Using histogram calculated by NSS, we propose classification method for digital contents using SVM. The proposed algorithm will be useful for copyright protection because it lets us distinguish illegal distributed digital contents more easily.
현재 도서, 만화 등의 디지털 저작물의 시장의 규모는 나날이 커져가고 있지만, 불법으로 디지털 이미지 형태로 유통되는 상황이 빈번히 발생하고 있다. 저작물에 대한 저작권 보호가 시급한 상황이지만, 국내외에 저작권 보호를 위한 기술은 미비하다. 디지털 이미지 형태로 유통되고 있는 여러 종류의 저작물들을 분류하고, 저작물의 종류에 맞게 저작물 식별 알고리즘을 적용한다면 저작권 위반 행위를 적발할 수 있다. 본 논문에서는 저작물 중 디지털 이미지의 형태로 불법 유통되는 도서, 만화, 웹툰, 일반 사진 등 4가지 저작물을 분류할 수 있는 알고리즘을 제안한다. 자연 영상에서 왜곡된 정도를 판단하는 기법인 NSS를 활용하여 각 디지털 저작물의 히스토그램을 추출하였다. 추출한 히스토그램을 입력으로 받는 SVM을 학습하여 디지털 저작물을 분류하였다. 본 논문에서 제안하는 저작물 식별 알고리즘을 통해 디지털 이미지 형태로 불법 유통되는 저작물들을 보다 쉽게 식별할 수 있어 저작권 보호에 도움이 될 것이다.