DOI QR코드

DOI QR Code

A Natural Scene Statistics Based Publication Classification Algorithm Using Support Vector Machine

서포트 벡터 머신을 이용한 자연 연상 통계 기반 저작물 식별 알고리즘

  • Song, Hyewon (Yonsei University, Department of Electrical and Electronic Engineering) ;
  • Kim, Doyoung (Yonsei University, Department of Electrical and Electronic Engineering) ;
  • Lee, Sanghoon (Yonsei University, Department of Electrical and Electronic Engineering)
  • Received : 2016.12.29
  • Accepted : 2017.04.26
  • Published : 2017.05.31

Abstract

Currently, the market of digital contents such as e-books, cartoons and webtoons is growing up, but the copyrights infringement are serious issue due to their distribution through illegal ways. However, the technologies for copyright protection are not developed enough. Therefore, in this paper, we propose the NSS-based publication classification method for copyright protection. Using histogram calculated by NSS, we propose classification method for digital contents using SVM. The proposed algorithm will be useful for copyright protection because it lets us distinguish illegal distributed digital contents more easily.

현재 도서, 만화 등의 디지털 저작물의 시장의 규모는 나날이 커져가고 있지만, 불법으로 디지털 이미지 형태로 유통되는 상황이 빈번히 발생하고 있다. 저작물에 대한 저작권 보호가 시급한 상황이지만, 국내외에 저작권 보호를 위한 기술은 미비하다. 디지털 이미지 형태로 유통되고 있는 여러 종류의 저작물들을 분류하고, 저작물의 종류에 맞게 저작물 식별 알고리즘을 적용한다면 저작권 위반 행위를 적발할 수 있다. 본 논문에서는 저작물 중 디지털 이미지의 형태로 불법 유통되는 도서, 만화, 웹툰, 일반 사진 등 4가지 저작물을 분류할 수 있는 알고리즘을 제안한다. 자연 영상에서 왜곡된 정도를 판단하는 기법인 NSS를 활용하여 각 디지털 저작물의 히스토그램을 추출하였다. 추출한 히스토그램을 입력으로 받는 SVM을 학습하여 디지털 저작물을 분류하였다. 본 논문에서 제안하는 저작물 식별 알고리즘을 통해 디지털 이미지 형태로 불법 유통되는 저작물들을 보다 쉽게 식별할 수 있어 저작권 보호에 도움이 될 것이다.

Keywords

References

  1. Y. Ryu, Global e-book market status and prospects(2015), Retrieved Aug. 12, 2015, from http://www.slideshare.net/pageraum2/201508-51546993
  2. S. J. Jang, "Design of the copyright protection for ePub e-Book system using certification information," JKIICE, vol. 19, no. 9, pp. 2197-2204, Sept. 2015.
  3. D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Computer Vision, vol. 60, no. 2, pp. 91-110, Nov. 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  4. H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, "Speeded-up robust features (SURF)," Computer vision and image understanding, vol. 110, no. 3, pp. 346-359, Jun. 2008. https://doi.org/10.1016/j.cviu.2007.09.014
  5. J. S. Song, S. J. Hur, Y. W. Park, and J. H. Choi, "User positioning method based on image similarity comparison using single camera," J. KICS, vol. 40, no. 8, pp. 1655-1666, Aug. 2015. https://doi.org/10.7840/kics.2015.40.8.1655
  6. H. J. Jung and J. S. Yoo, "Feature matching algorithm robust to viewpoint change," J. KICS, vol. 40, no. 12, pp. 2363-2371, Dec. 2015. https://doi.org/10.7840/kics.2015.40.12.2363
  7. W. J. Han and K. A. Sohn, "Image classification approach for improving CBIR system performance," J. KICS, vol. 41, no. 7, pp. 816-822, Jun. 2016. https://doi.org/10.7840/kics.2016.41.7.816
  8. D. Ciregan, M. Ueli, and S. Jurgen, "Multi-column deep neural networks for image classification," CVPR, pp. 3642-3649, Rhode island, USA, Jun. 2012.
  9. S. G. Kim and B. G. Kang, "An implementation of pattern recognition algorithm for fast paper currency counting," J. KICS, vol. 39B, no. 7, pp. 459-466, Jun. 2014. https://doi.org/10.7840/kics.2014.39B.7.459
  10. M. Anish, S. Rajiv, and A. C. Bovik, "Making a "completely blind" image quality analyzer," IEEE Sign. Process. Let., vol. 20, no. 3, pp. 209-212, Mar. 2013. https://doi.org/10.1109/LSP.2012.2227726
  11. J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett, vol. 9, no. 3, pp. 293-300, Jun. 1999. https://doi.org/10.1023/A:1018628609742
  12. P. John, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," Advances in Large Margin Classifiers, vol. 10, no. 3, pp. 61-74, Mar. 1999.