References
- Mendoza, M., Poblete, B. & Castillo, C. Twitter under crisis: Can we trust what we rt? In 1st Workshop on Social Media Analytics (SOMA '10). ACM Press, July 2010.
- Kanhabua, N. & Nejdl, W. Understanding the diversity of tweets in the time of outbreaks. In Proceedings of the 22nd international conference companion on World Wide Web, pp. 1335-1342. 2013.
- Benson, E., Haghighi, A., & Barzilay, R. Event discovery in social media feeds. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1 (pp. 389-398). Association for Computational Linguistics, 2011.
- Wikipedia, "Twitter", http://en.wikipedia.org/wiki/Twitter, 2017
- Blei, D. M., Ng, A. Y. & Jordan, M. I. 2003. Latent Dirichlet Allocation. The Journal of Machine Learning research 3, pp. 993-1022
- Tsolmon, B. & Lee, K.-S. " A Graph-based Reliable User Classification ", Lecture Notes in Electrical Engineering 285, pp. 61-68, Springer Verlag. 2013.
- Kleinberg J. M. "Authoritative Sources in a Hyperlinked Environment", Journal of the ACM, 46(5), pp. 604-632, 1999 https://doi.org/10.1145/324133.324140
- Tsolmon, B. & Lee, K.-S. " Extracting Social Events based on Latent Dirichlet Allocation with Time and User Analysis ", Proceeding of the 37th Annual International ACM SIGIR Conference(SIGIR2014), pp. 1187-1190, 2014.
- Rosen-Zvi, M., Griffiths, T., Steyvers, M., & Smyth, P. The author-topic model for authors and documents. In Proceedings of the 20th conference on Uncertainty in artificial intelligence (pp. 487-494). AUAI Press, 2004
- Griffiths, T. L., & Steyvers, M. Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl 1), 5228-5235, 2004.
- Diao, Q., Jiang, J., Zhu, F. & Lim, E.P. Finding bursty topics from microblogs. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pp. 536-544. 2012.
- GibbsLDA++: A C/C++ Implementation of Latent Dirichlet Allocation, http://gibbslda.sourceforge.net/