References
- Ansari, R. and Darvizeh, M. (2008), "Prediction of dynamic behavior of FGM shells under arbitrary boundary conditions", Compos. Struct., 85(4), 284-292. https://doi.org/10.1016/j.compstruct.2007.10.037
- Ansari, R. and Torabi, J. (2016), "Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading", Compos. Part B: Eng., 95, 196-208. https://doi.org/10.1016/j.compositesb.2016.03.080
- Bakshi, K. and Chakravorty, D. (2013), "Relative static and dynamic performances of composite conoidal shell roofs", Steel Compos. Struct., Int. J., 15(4), 379-397. https://doi.org/10.12989/scs.2013.15.4.379
- Buragohain, M. and Velmurugan, R. (2011), "Study of filament wound grid-stiffened composite cylindrical structures", 93(2), 1031-1038.
- Chang, C.H. (1981), "Vibrations of conical shells", Shock Vib. Digest., 13(6), 9-17. https://doi.org/10.1177/058310248101300605
- Civalek, O. (2006a), "Free vibration analysis of composite conical shells using the discrete singular convolution algorithm", Steel Compos. Struct., Int. J., 6(4), 353-366. https://doi.org/10.12989/scs.2006.6.4.353
- Civalek, O. (2006b) "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Press. Vess. Pip., 83(1), 1-12. https://doi.org/10.1016/j.ijpvp.2005.10.005
- Civalek, O. (2007), "Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC)", Int. J. Struct. Eng. Mech., 25(1), 127-130. https://doi.org/10.12989/sem.2007.25.1.127
- Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Methods Eng., 24(3), 169-181. https://doi.org/10.1002/cnm.961
- Civalek, O. (2013), "Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory", Compos.: Part B, 45(1), 1001-1009. https://doi.org/10.1016/j.compositesb.2012.05.018
- Darilmaz, K. (2012), "Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior", Steel Compos. Struct., Int. J., 12(4), 275-289. https://doi.org/10.12989/scs.2012.12.4.275
- Garnet, H. and Kempner, J. (1960), "Axisymmetric free vibrations of conical shells", J. Appl. Mech., 31(3), 458-466. https://doi.org/10.1115/1.3629663
- Golfman, Y. (2007), "Dynamic stability of the lattice structures in the manufacturing of carbon fiber epoxy/composites including the influence of damping properties", J. Adv. Mater. (Special Ed.), 3, 11-20.
- Gurdal, Z. and Gendron, G. (1993), "Optimal design of geodesically stiffened composite cylindrical shells", Compos. Eng., 3(12), 1131-1147. https://doi.org/10.1016/0961-9526(93)90070-Z
- Hemmatnezhad, M., Rahimi, G.H. and Ansari, R. (2014), "On the free vibrations of grid-stiffened composite cylindrical shells", Acta Mech., 225(2), 609-623. https://doi.org/10.1007/s00707-013-0976-1
- Irie, T., Yamada, G. and Kaneko, Y. (1982), "Free vibration of a conical shell with variable thickness", J. Sound Vib., 82(1), 83-94. https://doi.org/10.1016/0022-460X(82)90544-2
- Irie, T., Yamada, G. and Tanaka, K. (1984), "Natural frequencies of truncated conical shells", J. Sound Vib., 92(3), 447-453. https://doi.org/10.1016/0022-460X(84)90391-2
- Kadoli, R. and Ganesan, N. (2003), "Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid", Compos. Struct., 60(1), 19-32. https://doi.org/10.1016/S0263-8223(02)00313-6
- Kidane, S., Li, G., Helms, J., Pang, S. and Woldesenbet, E. (2003), "Buckling load analysis of grid stiffened composite cylinders", Compos.: Part B, 34(1), 1-9.
- Kim, T.D. (1999), "Fabrication and testing of composite isogrid stiffened cylinder", Compos. Struct., 45(1), 1-6. https://doi.org/10.1016/S0263-8223(98)00124-X
- Kim, T.D. (2000), "Fabrication and testing of thin isogrid composite stiffened panel", Compos. Struct., 49(1), 21-45. https://doi.org/10.1016/S0263-8223(99)00122-1
- Liang, W., He, Y., Yang, L.L. and Sha, L. (2011), "The buckling and dynamic analysis of composite grid stiffened structure", Appl. Mech. Mater., 52, 1794-1799.
- Liew, K.M. and Lim, C.W. (1995), "Vibratory characteristics of cantilevered rectangular shallow shells of variable thickness", AIAA J., 32(2), 387-396. https://doi.org/10.2514/3.59996
- Liew, K.M., Lim, M.K., Lim, C.W., Li D.B. and Zhang, Y.R. (1995), "Effects of initial twist and thickness variation on the vibration behaviour of shallow conical shells", J. Sound Vib., 180(2), 271-296. https://doi.org/10.1006/jsvi.1995.0079
- Liew, K.M., Lim, C.W. and Kitipornchai, S. (1997) "Vibration of shallow shells: a review with bibliography", J. Appl. Mech. Rev., 50, 431-444. https://doi.org/10.1115/1.3101731
- Liew, K.M., Ng, T.Y. and Zhao, X. (2005), "Free vibration analysis of conical shells via the element-free kp-Ritz method", J. Sound Vib., 281(3), 627-645. https://doi.org/10.1016/j.jsv.2004.01.005
- Lim, C.W. and Liew, K.M. (1995), "Vibratory behavior of shallow conical shells by a global Ritz formulation", Eng. Struct., 17(1), 63-70. https://doi.org/10.1016/0141-0296(95)91041-X
- Lim, C.W., Liew, K.M. and Kitipornchai, S. (1998), "Vibration of cantilevered laminated composite shallow conical shells", Int. J. Solids Struct., 35(15), 1695-1707. https://doi.org/10.1016/S0020-7683(97)00157-1
- Lopatin, A.V., Morozov, E.V. and Shatov, A.V. (2015), "Fundamental frequency of a cantilever composite filament-wound anisogrid lattice cylindrical shell", Compos. Struct., 133, 564-575. https://doi.org/10.1016/j.compstruct.2015.07.109
- Lopatin, A.V., Morozov, E.V. and Shatov, A.V. (2016), "An analytical expression for fundamental frequency of the composite lattice cylindrical shell with clamped edges", Compos. Struct., 141, 232-239. https://doi.org/10.1016/j.compstruct.2016.01.053
- Morozov, E.V., Lopatin, A.V. and Nesterov, V.A. (2011), "Buckling analysis and design of anisogrid composite lattice conical shells", Compos. Struct., 93(12), 3150-3162. https://doi.org/10.1016/j.compstruct.2011.06.015
- Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Elsevier, Academic Press, Amsterdam, Netherlands.
- Saunders, H., Wisniewski, E.J. and Pasley, P.R. (1960), "Vibration of conical shells", J. Acoust. Soc. Am., 32(6), 765-772. https://doi.org/10.1121/1.1908207
- Shi, S., Sun, Z., Ren, M., Chen, H. and Hu, X. (2013), "Buckling resistance of grid-stiffened carbon-fiber thin-shell structures", Compos.: Part B, 45, 888-896. https://doi.org/10.1016/j.compositesb.2012.09.052
- Shu, C. (1996), "Free vibration analysis of composite laminated conical shells by generalized differential quadrature", J. Sound Vib., 194(4), 587-604. https://doi.org/10.1006/jsvi.1996.0379
- Sivadas, K.R. and Ganesan, N. (1992), "Vibration analysis of thick composite clamped conical shells with variable thickness", J. Sound Vib., 152(1), 27-37. https://doi.org/10.1016/0022-460X(92)90063-4
- Siu, C.C. and Bert, C.W. (1970), "Free vibrational analysis of sandwich conical shells with free edges", J. Acoust. Soc. Am., 47(3B), 943-955. https://doi.org/10.1121/1.1911985
- Slinchenko, D. and Verijenko, V.E. (2001), "Sructural analysis of composite lattice shells of revolution on the basis of smearing stiffness", Compos. Struct., 54(2), 341-348. https://doi.org/10.1016/S0263-8223(01)00108-8
- Sofiyev, A.H. and Karaca, Z. (2009), "The vibration and stability of laminated non homogeneous orthotropic conical shells subjected to external pressure", Eur. J. Mech.-A/Solids, 28(2), 317-328. https://doi.org/10.1016/j.euromechsol.2008.06.002
- Sofiyev, A.H. and Kuruoglu, N. (2011), "Natural frequency of laminated orthotropic shells with different boundary conditions and resting on the Pasternak type elastic foundation", Compos. Part B: Eng., 42(6), 1562-1570. https://doi.org/10.1016/j.compositesb.2011.04.015
- Sofiyev, A.H., Omurtag, M. and Schnack, E. (2009), "The vibration and stability of orthotropic conical shells with nonhomogeneous material properties under a hydrostatic pressure", J. Sound Vib., 319(3), 963-983. https://doi.org/10.1016/j.jsv.2008.06.033
- Tong, L. (1993a), "Free vibration of orthotropic conical shells", Int. J. Eng. Sci., 31(5), 719-733. https://doi.org/10.1016/0020-7225(93)90120-J
- Tong, L. (1993b), "Free vibration of composite laminated conical shells", Int. J. Mech. Sci., 35(1), 47-61. https://doi.org/10.1016/0020-7403(93)90064-2
- Tong, L. (1994), "Free vibration of laminated conical shells including transverse shear deformation", Int. J. Solids Struct., 31(4), 443-456. https://doi.org/10.1016/0020-7683(94)90085-X
- Totaro, G. (2011), "Multilevel optimization of anisogrid lattice structures for aerospace", Ph.D. Thesis; Delft University of Technology, Delft, Netherlands.
- Totaro, G. (2012), "Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with triangular cells", Compos. Struct., 94(2), 446-452. https://doi.org/10.1016/j.compstruct.2011.08.002
- Totaro, G. (2013a), "Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with hexagonal cells", Compos. Struct., 94(2), 403-410. https://doi.org/10.1016/j.compstruct.2011.07.025
- Totaro, G. (2013b), "Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with hexagonal cells", Compos. Struct., 95, 403-410. https://doi.org/10.1016/j.compstruct.2012.07.011
- Totaro, G. and De Nicola, F. (2012), "Recent advance on design and manufacturing of composite anisogrid structures for space launchers", Acta Astronaut., 81(2), 570-577. https://doi.org/10.1016/j.actaastro.2012.07.012
- Totaro, G. and Gurdal, Z. (2005), "Optimal design of composite lattice structures for aerospace application", Proceedings of European Conference for Aerospace Sciences (EUCASS), Moscow, Russia, July.
- Totaro, G. and Gurdal, Z. (2009), "Optimal design of composite lattice shell structures for aerospace applications", Aerosp. Sci. Technol., 13(4), 157-164. https://doi.org/10.1016/j.ast.2008.09.001
- Vasiliev, V.V. and Rasin, A.F. (2006), "Anisogrid composite lattice structures for spacecraft and aircraft applications", Compos. Struct., 76(1), 182-189. https://doi.org/10.1016/j.compstruct.2006.06.025
- Vasiliev, V.V., Barynin, V.A. and Rasin, A.F. (2001), "Anisogrid lattice structures-survey of development and application", Compos. Struct., 54(2), 361-370. https://doi.org/10.1016/S0263-8223(01)00111-8
- Wodesenbet, E., Kidane, S. and Pang, S. (2003), "Optimization for buckling loads of grid stiffened composite panels", Compos. Struct., 60(2), 159-169. https://doi.org/10.1016/S0263-8223(02)00315-X
- Yang, C.C. (1974), "On vibrations of orthotropic conical shells", J. Sound Vib., 34(4), 552-555. https://doi.org/10.1016/S0022-460X(74)80182-3
Cited by
- Thermo-Elastic Creep Analysis and Life Assessment of Thick Truncated Conical Shells with Variable Thickness vol.11, pp.9, 2017, https://doi.org/10.1142/s1758825119500868
- The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047