DOI QR코드

DOI QR Code

Investigation of the vibration of lattice composite conical shells formed by geodesic helical ribs

  • Nezamoleslami, Reza (Department of Mechanical Engineering, Tarbiat Modares University) ;
  • Khadem, Siamak E. (Department of Mechanical Engineering, Tarbiat Modares University)
  • Received : 2016.06.04
  • Accepted : 2017.03.25
  • Published : 2017.06.10

Abstract

In this paper free linear vibration of lattice composite conical shells will be investigated. Lattice composite conical shell consists of composite helical ribs and thin outer skin. A smeared method is employed to obtain the variable coefficients of stiffness of conical shell. The ribs are modeled as a beam and in addition to the axial loads, endure shear loads and bending moments. Therefore, theoretical formulations are based on first-order shear deformation theory of shell. For verification of the obtained results, comparison is made with those available in open literature. Also, using FEM software the 3D finite element model of composite lattice conical shell is built and analyzed. Comparing results of analytical and numerical analyses show a good agreement between them. Some special cases as variation of geometric parameters of lattice part, effect of the boundary conditions and influence of the circumferential wave numbers on the natural frequencies of the conical shell are studied. It is concluded, when mass and the geometrical ratio of the composite lattice conical shell do not change, increment the semi vertex angle of cone leads to increase the natural frequencies. Moreover for shell thicknesses greater than a specific value, the presence of the lattice structure has not significant effect on the natural frequencies. The obtained results have novelty and can be used for further and future researches.

Keywords

References

  1. Ansari, R. and Darvizeh, M. (2008), "Prediction of dynamic behavior of FGM shells under arbitrary boundary conditions", Compos. Struct., 85(4), 284-292. https://doi.org/10.1016/j.compstruct.2007.10.037
  2. Ansari, R. and Torabi, J. (2016), "Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading", Compos. Part B: Eng., 95, 196-208. https://doi.org/10.1016/j.compositesb.2016.03.080
  3. Bakshi, K. and Chakravorty, D. (2013), "Relative static and dynamic performances of composite conoidal shell roofs", Steel Compos. Struct., Int. J., 15(4), 379-397. https://doi.org/10.12989/scs.2013.15.4.379
  4. Buragohain, M. and Velmurugan, R. (2011), "Study of filament wound grid-stiffened composite cylindrical structures", 93(2), 1031-1038.
  5. Chang, C.H. (1981), "Vibrations of conical shells", Shock Vib. Digest., 13(6), 9-17. https://doi.org/10.1177/058310248101300605
  6. Civalek, O. (2006a), "Free vibration analysis of composite conical shells using the discrete singular convolution algorithm", Steel Compos. Struct., Int. J., 6(4), 353-366. https://doi.org/10.12989/scs.2006.6.4.353
  7. Civalek, O. (2006b) "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Press. Vess. Pip., 83(1), 1-12. https://doi.org/10.1016/j.ijpvp.2005.10.005
  8. Civalek, O. (2007), "Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC)", Int. J. Struct. Eng. Mech., 25(1), 127-130. https://doi.org/10.12989/sem.2007.25.1.127
  9. Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Methods Eng., 24(3), 169-181. https://doi.org/10.1002/cnm.961
  10. Civalek, O. (2013), "Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory", Compos.: Part B, 45(1), 1001-1009. https://doi.org/10.1016/j.compositesb.2012.05.018
  11. Darilmaz, K. (2012), "Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior", Steel Compos. Struct., Int. J., 12(4), 275-289. https://doi.org/10.12989/scs.2012.12.4.275
  12. Garnet, H. and Kempner, J. (1960), "Axisymmetric free vibrations of conical shells", J. Appl. Mech., 31(3), 458-466. https://doi.org/10.1115/1.3629663
  13. Golfman, Y. (2007), "Dynamic stability of the lattice structures in the manufacturing of carbon fiber epoxy/composites including the influence of damping properties", J. Adv. Mater. (Special Ed.), 3, 11-20.
  14. Gurdal, Z. and Gendron, G. (1993), "Optimal design of geodesically stiffened composite cylindrical shells", Compos. Eng., 3(12), 1131-1147. https://doi.org/10.1016/0961-9526(93)90070-Z
  15. Hemmatnezhad, M., Rahimi, G.H. and Ansari, R. (2014), "On the free vibrations of grid-stiffened composite cylindrical shells", Acta Mech., 225(2), 609-623. https://doi.org/10.1007/s00707-013-0976-1
  16. Irie, T., Yamada, G. and Kaneko, Y. (1982), "Free vibration of a conical shell with variable thickness", J. Sound Vib., 82(1), 83-94. https://doi.org/10.1016/0022-460X(82)90544-2
  17. Irie, T., Yamada, G. and Tanaka, K. (1984), "Natural frequencies of truncated conical shells", J. Sound Vib., 92(3), 447-453. https://doi.org/10.1016/0022-460X(84)90391-2
  18. Kadoli, R. and Ganesan, N. (2003), "Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid", Compos. Struct., 60(1), 19-32. https://doi.org/10.1016/S0263-8223(02)00313-6
  19. Kidane, S., Li, G., Helms, J., Pang, S. and Woldesenbet, E. (2003), "Buckling load analysis of grid stiffened composite cylinders", Compos.: Part B, 34(1), 1-9.
  20. Kim, T.D. (1999), "Fabrication and testing of composite isogrid stiffened cylinder", Compos. Struct., 45(1), 1-6. https://doi.org/10.1016/S0263-8223(98)00124-X
  21. Kim, T.D. (2000), "Fabrication and testing of thin isogrid composite stiffened panel", Compos. Struct., 49(1), 21-45. https://doi.org/10.1016/S0263-8223(99)00122-1
  22. Liang, W., He, Y., Yang, L.L. and Sha, L. (2011), "The buckling and dynamic analysis of composite grid stiffened structure", Appl. Mech. Mater., 52, 1794-1799.
  23. Liew, K.M. and Lim, C.W. (1995), "Vibratory characteristics of cantilevered rectangular shallow shells of variable thickness", AIAA J., 32(2), 387-396. https://doi.org/10.2514/3.59996
  24. Liew, K.M., Lim, M.K., Lim, C.W., Li D.B. and Zhang, Y.R. (1995), "Effects of initial twist and thickness variation on the vibration behaviour of shallow conical shells", J. Sound Vib., 180(2), 271-296. https://doi.org/10.1006/jsvi.1995.0079
  25. Liew, K.M., Lim, C.W. and Kitipornchai, S. (1997) "Vibration of shallow shells: a review with bibliography", J. Appl. Mech. Rev., 50, 431-444. https://doi.org/10.1115/1.3101731
  26. Liew, K.M., Ng, T.Y. and Zhao, X. (2005), "Free vibration analysis of conical shells via the element-free kp-Ritz method", J. Sound Vib., 281(3), 627-645. https://doi.org/10.1016/j.jsv.2004.01.005
  27. Lim, C.W. and Liew, K.M. (1995), "Vibratory behavior of shallow conical shells by a global Ritz formulation", Eng. Struct., 17(1), 63-70. https://doi.org/10.1016/0141-0296(95)91041-X
  28. Lim, C.W., Liew, K.M. and Kitipornchai, S. (1998), "Vibration of cantilevered laminated composite shallow conical shells", Int. J. Solids Struct., 35(15), 1695-1707. https://doi.org/10.1016/S0020-7683(97)00157-1
  29. Lopatin, A.V., Morozov, E.V. and Shatov, A.V. (2015), "Fundamental frequency of a cantilever composite filament-wound anisogrid lattice cylindrical shell", Compos. Struct., 133, 564-575. https://doi.org/10.1016/j.compstruct.2015.07.109
  30. Lopatin, A.V., Morozov, E.V. and Shatov, A.V. (2016), "An analytical expression for fundamental frequency of the composite lattice cylindrical shell with clamped edges", Compos. Struct., 141, 232-239. https://doi.org/10.1016/j.compstruct.2016.01.053
  31. Morozov, E.V., Lopatin, A.V. and Nesterov, V.A. (2011), "Buckling analysis and design of anisogrid composite lattice conical shells", Compos. Struct., 93(12), 3150-3162. https://doi.org/10.1016/j.compstruct.2011.06.015
  32. Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Elsevier, Academic Press, Amsterdam, Netherlands.
  33. Saunders, H., Wisniewski, E.J. and Pasley, P.R. (1960), "Vibration of conical shells", J. Acoust. Soc. Am., 32(6), 765-772. https://doi.org/10.1121/1.1908207
  34. Shi, S., Sun, Z., Ren, M., Chen, H. and Hu, X. (2013), "Buckling resistance of grid-stiffened carbon-fiber thin-shell structures", Compos.: Part B, 45, 888-896. https://doi.org/10.1016/j.compositesb.2012.09.052
  35. Shu, C. (1996), "Free vibration analysis of composite laminated conical shells by generalized differential quadrature", J. Sound Vib., 194(4), 587-604. https://doi.org/10.1006/jsvi.1996.0379
  36. Sivadas, K.R. and Ganesan, N. (1992), "Vibration analysis of thick composite clamped conical shells with variable thickness", J. Sound Vib., 152(1), 27-37. https://doi.org/10.1016/0022-460X(92)90063-4
  37. Siu, C.C. and Bert, C.W. (1970), "Free vibrational analysis of sandwich conical shells with free edges", J. Acoust. Soc. Am., 47(3B), 943-955. https://doi.org/10.1121/1.1911985
  38. Slinchenko, D. and Verijenko, V.E. (2001), "Sructural analysis of composite lattice shells of revolution on the basis of smearing stiffness", Compos. Struct., 54(2), 341-348. https://doi.org/10.1016/S0263-8223(01)00108-8
  39. Sofiyev, A.H. and Karaca, Z. (2009), "The vibration and stability of laminated non homogeneous orthotropic conical shells subjected to external pressure", Eur. J. Mech.-A/Solids, 28(2), 317-328. https://doi.org/10.1016/j.euromechsol.2008.06.002
  40. Sofiyev, A.H. and Kuruoglu, N. (2011), "Natural frequency of laminated orthotropic shells with different boundary conditions and resting on the Pasternak type elastic foundation", Compos. Part B: Eng., 42(6), 1562-1570. https://doi.org/10.1016/j.compositesb.2011.04.015
  41. Sofiyev, A.H., Omurtag, M. and Schnack, E. (2009), "The vibration and stability of orthotropic conical shells with nonhomogeneous material properties under a hydrostatic pressure", J. Sound Vib., 319(3), 963-983. https://doi.org/10.1016/j.jsv.2008.06.033
  42. Tong, L. (1993a), "Free vibration of orthotropic conical shells", Int. J. Eng. Sci., 31(5), 719-733. https://doi.org/10.1016/0020-7225(93)90120-J
  43. Tong, L. (1993b), "Free vibration of composite laminated conical shells", Int. J. Mech. Sci., 35(1), 47-61. https://doi.org/10.1016/0020-7403(93)90064-2
  44. Tong, L. (1994), "Free vibration of laminated conical shells including transverse shear deformation", Int. J. Solids Struct., 31(4), 443-456. https://doi.org/10.1016/0020-7683(94)90085-X
  45. Totaro, G. (2011), "Multilevel optimization of anisogrid lattice structures for aerospace", Ph.D. Thesis; Delft University of Technology, Delft, Netherlands.
  46. Totaro, G. (2012), "Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with triangular cells", Compos. Struct., 94(2), 446-452. https://doi.org/10.1016/j.compstruct.2011.08.002
  47. Totaro, G. (2013a), "Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with hexagonal cells", Compos. Struct., 94(2), 403-410. https://doi.org/10.1016/j.compstruct.2011.07.025
  48. Totaro, G. (2013b), "Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with hexagonal cells", Compos. Struct., 95, 403-410. https://doi.org/10.1016/j.compstruct.2012.07.011
  49. Totaro, G. and De Nicola, F. (2012), "Recent advance on design and manufacturing of composite anisogrid structures for space launchers", Acta Astronaut., 81(2), 570-577. https://doi.org/10.1016/j.actaastro.2012.07.012
  50. Totaro, G. and Gurdal, Z. (2005), "Optimal design of composite lattice structures for aerospace application", Proceedings of European Conference for Aerospace Sciences (EUCASS), Moscow, Russia, July.
  51. Totaro, G. and Gurdal, Z. (2009), "Optimal design of composite lattice shell structures for aerospace applications", Aerosp. Sci. Technol., 13(4), 157-164. https://doi.org/10.1016/j.ast.2008.09.001
  52. Vasiliev, V.V. and Rasin, A.F. (2006), "Anisogrid composite lattice structures for spacecraft and aircraft applications", Compos. Struct., 76(1), 182-189. https://doi.org/10.1016/j.compstruct.2006.06.025
  53. Vasiliev, V.V., Barynin, V.A. and Rasin, A.F. (2001), "Anisogrid lattice structures-survey of development and application", Compos. Struct., 54(2), 361-370. https://doi.org/10.1016/S0263-8223(01)00111-8
  54. Wodesenbet, E., Kidane, S. and Pang, S. (2003), "Optimization for buckling loads of grid stiffened composite panels", Compos. Struct., 60(2), 159-169. https://doi.org/10.1016/S0263-8223(02)00315-X
  55. Yang, C.C. (1974), "On vibrations of orthotropic conical shells", J. Sound Vib., 34(4), 552-555. https://doi.org/10.1016/S0022-460X(74)80182-3

Cited by

  1. Thermo-Elastic Creep Analysis and Life Assessment of Thick Truncated Conical Shells with Variable Thickness vol.11, pp.9, 2017, https://doi.org/10.1142/s1758825119500868
  2. The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047