DOI QR코드

DOI QR Code

Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection

  • Ehyaei, Javad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Daman, Mohsen (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
  • Received : 2016.10.08
  • Accepted : 2017.04.12
  • Published : 2017.06.25

Abstract

The transverse vibration of double walled carbon nanotube (DWCNT) embedded in elastic medium with an initial imperfection is considered. In this paper, Timoshenko beam theory is employed. However the nonlocal theory is used for modeling the nano scale of nanotube. In addition, the governing Equations of motion are obtained utilizing the Hamilton's principle and simply-simply boundary conditions are assumed. Furthermore, the Navier method is used for determining the natural frequencies of DWCNT. Hence, some parameters such as nonlocality, curvature amplitude, Winkler and Pasternak elastic foundations and length of the curved DWCNT are analyzed and discussed. The results show that, the curvature amplitude causes to increase natural frequency. However, nonlocal coefficient and elastic foundations have important role in vibration behavior of DWCNT with imperfection.

Keywords

References

  1. Akgoz, B. and Civalek, O. (2014), "A new trigonometric beam model for buckling of strain gradientmicrobeams", Int. J. Mech. Sci., 81, 88-94. https://doi.org/10.1016/j.ijmecsci.2014.02.013
  2. Chang, W.J. and Lee, H.L. (2009), "Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model", Phys. Lett. A, 373(10), 982-985. https://doi.org/10.1016/j.physleta.2009.01.011
  3. Cigeroglu, E. and Samandari, H. (2014), "Nonlinear free Vibrations of curved double walled carbon Nanotubes using differential quadrature method", Physica E: Low-dimensional Systems and Nanostructures, 64, 95-105. https://doi.org/10.1016/j.physe.2014.07.010
  4. Civalek, O, and Akgoz, B. (2009), "Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen's nonlocal elasticity theory", Int. J. Eng. Appl. Sci., 1(2), 47-56.
  5. Demir, C. and Civalek, O. (2013), "Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models", Appl. Math. Model., 37(22), 9355-9367. https://doi.org/10.1016/j.apm.2013.04.050
  6. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  7. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media.
  8. He, X.Q., Wang, C.M., Yan, Y., Zhang, L.X. and Nie, G.H. (2008), "Pressure dependence of the instability of multiwalled carbon nanotubes conveying fluids", Arch. Appl. Mech., 78(8), 637-648. https://doi.org/10.1007/s00419-007-0184-3
  9. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010
  10. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
  11. Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded doublewalled carbon nanotubes based on nonlocal Timoshenko beam theory", Computat. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002
  12. Li, R. and Kardomateas, G.A. (2007), "Thermal buckling of multi-walled carbon nanotubes by nonlocal elasticity", J. Appl. Mech., 74(3), 399-405. https://doi.org/10.1115/1.2200656
  13. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solid. Struct., 44(16), 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034
  14. Mayoof, F.N. and Hawwa, M.A. (2009), "Chaotic behavior of a curved carbon nanotube under harmonic excitation", Chaos, Solitons & Fractals, 42(3), 1860-1867. https://doi.org/10.1016/j.chaos.2009.03.104
  15. Mehdipour, I., Barari, A., Kimiaeifar, A. and Domairry, G. (2012), "Vibrational analysis of curved singlewalled carbon nanotube on a Pasternak elastic foundation", Adv. Eng. Software, 48, 1-5. https://doi.org/10.1016/j.advengsoft.2012.01.004
  16. Mir, M., Hosseini, A. and Majzoobi, G.H., (2008), "A numerical study of vibrational properties of singlewalled carbon nanotubes", Computat. Mater. Sci., 43(3), 540-548. https://doi.org/10.1016/j.commatsci.2007.12.024
  17. Mitra, M. and Gopalakrishnan, S. (2009), "Wave propagation in multi-walled carbon nanotube", Computat. Mater. Sci., 45(2), 411-418. https://doi.org/10.1016/j.commatsci.2008.10.022
  18. Murmu, T. and Pradhan, S.C. (2009), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E: Low-dimensional Systems and Nanostructures, 41(7), 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004
  19. Pantano, A., Parks, D.M. and Boyce, M.C. (2004), "Mechanics of deformation of single-and multi-wall carbon nanotubes", J. Mech. Phys. Solids, 52(4), 789-821. https://doi.org/10.1016/j.jmps.2003.08.004
  20. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  21. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
  22. Shen, H.S. and Zhang, C.L. (2007), "Postbuckling of double-walled carbon nanotubes with temperature dependent properties and initial defects under combined axial and radial mechanical loads", Int. J. Solid. Struct., 44(5), 1461-1487. https://doi.org/10.1016/j.ijsolstr.2006.06.027
  23. Wang, Q, (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
  24. Wang, L. (2009), "Dynamical behaviors of double-walled carbon nanotubes conveying fluid accounting for the role of small length scale", Computat. Mater. Sci., 45(2), 584-588. https://doi.org/10.1016/j.commatsci.2008.12.006
  25. Wang, L. and Hu, H. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B, 71(19), 195412. https://doi.org/10.1103/PhysRevB.71.195412
  26. Wang, Q. and Varadan, V.K. (2007), "Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes", Smart Mater. Struct., 16(1), 178. https://doi.org/10.1088/0964-1726/16/1/022
  27. Wang, L., Hu, H. and Guo, W. (2006), "Validation of the non-local elastic shell model for studying longitudinal waves in single-walled carbon nanotubes", Nanotechnology, 17(5), 1408. https://doi.org/10.1088/0957-4484/17/5/041
  28. Wang, X., Lu, G. and Lu, Y.J. (2007a), "Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading", Int. J. Solid. Struct., 44(1), 336-351. https://doi.org/10.1016/j.ijsolstr.2006.04.031
  29. Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007b), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401
  30. Wang, C.M., Kitipornchai, S., Lim, C.W. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475)
  31. Yang, H.K. and Wang, X. (2006), "Bending stability of multi-wall carbon nanotubes embedded in an elastic medium", Model. Simul. Mater. Sci. Eng., 14(1), p. 99. https://doi.org/10.1088/0965-0393/14/1/008
  32. Yang, J., Jia, X.L. and Kitipornchai, S. (2008), "Pull-in instability of nano-switches using nonlocal elasticity theory", J. Phys. D: Appl. Phys., 41(3), 035103. https://doi.org/10.1088/0022-3727/41/3/035103
  33. Zhang, C.L. and Shen, H.S. (2007), "Buckling and postbuckling of single-walled carbon nanotubes under combined axial compression and torsion in thermal environments", Phys. Rev. B, 75(4), 045408. https://doi.org/10.1103/PhysRevB.75.045408
  34. Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2006a), "Buckling of multiwalled carbon nanotubes using Timoshenko beam theory", J. Eng. Mech., 132(9), 952-958. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(952)
  35. Zhang, Y.Y., Tan, V.B.C. and Wang, C.M. (2006b), "Effect of chirality on buckling behavior of singlewalled carbon nanotubes", J. Appl. Phys., 100(7), 074304. https://doi.org/10.1063/1.2355433

Cited by

  1. Frequency and thermal buckling information of laminated composite doubly curved open nanoshell vol.10, pp.1, 2017, https://doi.org/10.12989/anr.2021.10.1.001
  2. Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2017, https://doi.org/10.12989/anr.2021.10.1.025
  3. Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2017, https://doi.org/10.12989/anr.2021.11.2.203