DOI QR코드

DOI QR Code

Preparation of superparamagnetic ZnFe2O4 submicrospheres via a solvothermal method

  • Ma, Jie (College of science, University of Shanghai for Science and Technology) ;
  • Chen, Bingjie (College of science, University of Shanghai for Science and Technology) ;
  • Chen, Bingkun (College of science, University of Shanghai for Science and Technology) ;
  • Zhang, Shuping (College of science, University of Shanghai for Science and Technology)
  • Received : 2016.09.14
  • Accepted : 2017.04.08
  • Published : 2017.06.25

Abstract

Superparamagnetic Zinc ferrite submicropheres are firstly synthesized via a one-pot solvothermal approach at $200-215^{\circ}C$ for 4-8 hours. $ZnCl_2$, $FeCl_3$ and NaAc are used as precursors with ethylene glycol solvent. The X-ray diffraction (XRD) data indicate that $ZnFe_2O_4$ nanoparticles with the grain size around $15{\pm}3nm$ can be successfully synthesized via the one-pot method. The scanning/transmission electronic microscope (SEM/TEM) images further show the samples are submicrospheres self-assembled by nanoparticles with size about 375-500 nm changed with reaction conditions. Room-temperature vibration magnetic strength measurements (VMS) demonstrates the as-obtained $ZnFe_2O_4$ submicrospheres show prefect superparamagnetism, whose coercivity force and remanence are practically nil. The reaction temperature and time influence on the crystallinity, diameter, saturated magnetic intensity and morphology of the particles.

Keywords

Acknowledgement

Supported by : national natural science foundation of China

References

  1. Bhosale, R.R., Kumar, A., Almomani, F. and Alxneit, I. (2016), "Sol-Gel derived $CeO_2$-$Fe_2O_3$ nanoparticles: Synthesis, characterization and solar thermochemical application", Ceram. Int., 42(6), 6728-6737. https://doi.org/10.1016/j.ceramint.2016.01.042
  2. George, M., John, A.M., Nair, S.S., Joy, P.A. and Anantharaman, M.R. (2006), "Finite size effects on the structural and magnetic properties of sol-gel synthesized $NiFe_2O_4$ powders", J. Magn. Mater., 302(1), 190-195. https://doi.org/10.1016/j.jmmm.2005.08.029
  3. Han, P., Jiang, X., Zhang, L., Yu, F., Shi, Q., Ding, Y. and Zhang, Q. (2014), "Effect of $Li_2CO_3$, flux on the preparation temperature, particle micro morphology and light absorption performance of samarium borate by solid state method", J. Mater. Sci. Mater. Electron., 26(2), 666-670. https://doi.org/10.1007/s10854-014-2447-4
  4. Hu, P., Pan, D.A., Wang, X.F., Tian, J.J., Wang, J., Zhang, S.G. and Volinsky, A.A. (2011), "Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition", Magn. Magn. Mater., 323(5), 569-573. https://doi.org/10.1016/j.jmmm.2010.10.013
  5. Kim, S., Han, B.K., Quach, D.T., Kim, D.H., Kim, Y.K. and Choi-Yim, H. (2016), "Optimization of Fe/Co ratio in $Fe_{(87-x-y)}Co_xTi_7Zr_6B_y$ alloys for high saturation magnetization", Curr. Appl. Phys., 16(5), 515-519. https://doi.org/10.1016/j.cap.2016.02.005
  6. Kong, F.L., Chang, C.T., Inoue, A., Shalaan, E. and Al-Marzouki, F. (2014), "Fe-based amorphous soft magneticalloys with high saturation magnetization and good bending ductility", J. Alloys Comp., 615, 163-166. https://doi.org/10.1016/j.jallcom.2014.06.093
  7. Liu, C., Zou, B., Rondinone, A.J. and Zhang, Z.J. (2000), "Reverse micelle synthesis and characterization of superparamagnetic $MnFe_2O_4$ spinel ferrite nanocrystallites", J. Phys. Chem. B, 104(6), 1141-1145. https://doi.org/10.1021/jp993552g
  8. Liu, S.H., Xing, R.M., Lu, F., Rana, R.K. and Zhu, J.J. (2009), "One-pot template-free fabrication of hollow magnetite nanospheres and their application as potential drug carriers", J. Phys. Chem. C, 113(50), 21042-21047. https://doi.org/10.1021/jp907296n
  9. Lopez, J., Gonzalez-Bahamon, L.F., Prado, J., Caicedo, J.C., Zambrano, G., Gomez, M.E., Esteve, J. and Prieto, P. (2012), "Study of magnetic and structural properties of ferrofluids based on cobalt-zinc ferrite nanoparticles", J. Magn. Mater., 324(4), 394-402. https://doi.org/10.1016/j.jmmm.2011.07.040
  10. Luo, C., Fu, Y., Zhang, D., Yuan, S. and Zhai, Y. (2015), "Temperature dependent coercivity and magnetization of light rare-earth Nd doped permalloy thin films", J. Magnet. Magnet. Mater., 374, 711-715. https://doi.org/10.1016/j.jmmm.2014.09.014
  11. Ma, J., Zhao, J., Li, W.L., Zhang, S. and Tian, Z. (2013), "Preparation of cobalt ferrite nanoparticles via a novel solvothermal approach using divalent iron salt as precursors", Mater. Res. Bull., 48(2), 214-217. https://doi.org/10.1016/j.materresbull.2012.09.072
  12. Nguyet, D.T.T., Duong, N.P., Satoh, T., Anh, L.N. and Hien, T.D. (2013), "Magnetization and coercivity of nanocrystalline gadolinium iron garnet", J. Magnet. Magnet. Mater., 332, 180-185. https://doi.org/10.1016/j.jmmm.2012.12.031
  13. Reddy, M.P. and Mohamed, A.M.A. (2015), "One-pot solvothermal synthesis and performance of mesoporous magnetic ferrite $MFe_2O_4$ nanospheres", Micropor. Mesopor. Mater., 215, 37-45. https://doi.org/10.1016/j.micromeso.2015.05.024
  14. Sharma, R.K. and Ghose, R. (2015), "Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans", Ceram. Int., 41(1), 967-975. https://doi.org/10.1016/j.ceramint.2014.09.016
  15. Silva, A.S., Franco, A., Pelegrini, F. and Dantas, N.O. (2015), "Paramagnetic behavior at room temperature of $Zn_{1-x}$ $Mn_x$ Te nanocrystals grown in a phosphate glass matrix by the fusion method", J. Alloys Compound., 647, 637-643. https://doi.org/10.1016/j.jallcom.2015.06.033
  16. Singh, J.P., Gautam, S., Srivastava, R.C., Asokan, K. and Kanjilal, D. (2015), "Crystallite size induced crossover from paramagnetism to superparamagnetism in zinc ferrite nanoparticles", Superlattices Microstruct., 86, 390-394. https://doi.org/10.1016/j.spmi.2015.07.062
  17. Sun, S.H., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X. and Li, G.X. (2004), "Monodisperse $MFe_2O_4$ (M = Fe, Co, Mn) nanoparticles", J. Am. Chem. Soc., 126(1), 273-279. https://doi.org/10.1021/ja0380852
  18. Surinwonga, S. and Rujiwatrab, A. (2013), "Ultrasonic cavitation assisted solvothermal synthesis of superparamagnetic zinc ferrite nanoparticles", Particuology, 11(5), 588-593. https://doi.org/10.1016/j.partic.2012.06.008
  19. Wang, X., Chen, L., Fan, Q., Fan, J. and Xu, G. (2015), "Lactoferrin-assisted synthesis of zinc ferrite nanocrystal: Its magnetic performance and photocatalytic activity", J. Alloys Compound., 652, 132-138. https://doi.org/10.1016/j.jallcom.2015.08.228
  20. Zhang, Q., Zhu, M., Zhang, Q., Li, Y. and Wang, H. (2009), "Fabrication and magnetic property analysis of monodisperse manganese-zinc ferrite nanospheres", J. Magnet. Magnet. Mater., 321(19), 3203-3206. https://doi.org/10.1016/j.jmmm.2009.05.049
  21. Zhang, Y., Li, X., Jing, J. and Zhao, Y. (2016), "Coercivity, microstructure and magnetization reversal mechanism in TiNi-doped L1FePt thin films", J. Magnet. Magnet. Mater., 408, 228-232. https://doi.org/10.1016/j.jmmm.2016.02.040