DOI QR코드

DOI QR Code

Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam

  • Ehyaei, Javad (Faculty of Engineering, Department of Mechanics, Imam Khomeini International University) ;
  • Akbarshahi, Amir (Faculty of Engineering, Department of Mechanics, Imam Khomeini International University) ;
  • Shafiei, Navvab (Department of Mechanical Engineering, Payame Noor University (PNU))
  • 투고 : 2016.10.18
  • 심사 : 2017.03.17
  • 발행 : 2017.06.25

초록

In this paper, a nanobeam connected to a rotating molecular hub is considered. The vibration behavior of rotating functionally graded nanobeam based on Eringen's nonlocal theory and Euler-Bernoulli beam model is investigated. Furthermore, axial preload and porosity effect is studied. It is supposed that the material attributes of the functionally graded porous nanobeam, varies continuously in the thickness direction according to the power law model considering the even distribution of porosities. Porosity at the nanoscopic length scale can affect on the rotating functionally graded nanobeams dynamics. The equations of motion and the associated boundary conditions are derived through the Hamilton's principle and generalized differential quadrature method (GDQM) is utilized to solve the equations. In this paper, the influences of some parameters such as functionally graded power (FG-index), porosity parameter, axial preload, nonlocal parameter and angular velocity on natural frequencies of rotating nanobeams with pure ceramic, pure metal and functionally graded materials are examined and some comparisons about the influence of various parameters on the natural frequencies corresponding to the simply-simply, simplyclamped, clamped-clamped boundary conditions are carried out.

키워드

참고문헌

  1. Akgoz, B. and Civalek, O. (2014), "Shear deformation beam models for functionally graded microbeams with new shear correction factors", Compos. Struct., 112, 214-225. https://doi.org/10.1016/j.compstruct.2014.02.022
  2. Ansari, R. and Sahmani, S. (2012), "Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models", Commun. Nonlinear Sci. Numer. Simul., 17(4), 1965-1979. https://doi.org/10.1016/j.cnsns.2011.08.043
  3. Ansari, R., Sahmani, S. and Arash, B. (2010), "Nonlocal plate model for free vibrations of single-layered graphene sheets", Phys. Lett. A, 375(1), 53-62. https://doi.org/10.1016/j.physleta.2010.10.028
  4. Aranda-Ruiz, J., Loya, J. and Fernandez-Saez, J. (2012), "Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory", Compos. Struct., 94(9), 2990-3001. https://doi.org/10.1016/j.compstruct.2012.03.033
  5. Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
  6. Barretta, R., Feo, L., Luciano, R. and de Sciarra, F.M. (2015a), "Variational formulations for functionally graded nonlocal Bernoulli-Euler nanobeams", Compos. Struct., 129, 80-89. https://doi.org/10.1016/j.compstruct.2015.03.033
  7. Barretta, R., Feo, L., Luciano, R. and de Sciarra, F.M. (2015b), "A gradient Eringen model for functionally graded nanorods", Compos. Struct., 131, 1124-1131. https://doi.org/10.1016/j.compstruct.2015.06.077
  8. Barretta, R., Feo, L., Luciano, R., de Sciarra, F.M. and Penna, R. (2016a), "Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation", Compos. Part B: Eng., 100, 208-219. https://doi.org/10.1016/j.compositesb.2016.05.052
  9. Barretta, R., Feo, L., Luciano, R. and de Sciarra, F.M. (2016b), "Application of an enhanced version of the Eringen differential model to nanotechnology", Compos. Part B: Eng., 96, 274-280. https://doi.org/10.1016/j.compositesb.2016.04.023
  10. Bath, J. and Turberfield, A.J. (2007), "DNA nanomachines", Nature Nanotech., 2(5), 275-284. https://doi.org/10.1038/nnano.2007.104
  11. Bedard, T.C. and Moore, J.S. (1995), "Design and synthesis of molecular turnstiles", J. Am. Chem. Soc., 117(43), 10662-10671. https://doi.org/10.1021/ja00148a008
  12. Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247X(71)90110-7
  13. Bellman, R., Kashef, B. and Casti, J. (1972), "Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10(1), 40-52. https://doi.org/10.1016/0021-9991(72)90089-7
  14. Benvenuti, E. and Simone, A. (2013), "One-dimensional nonlocal and gradient elasticity: closed-form solution and size effect", Mech. Res. Commun., 48, 46-51. https://doi.org/10.1016/j.mechrescom.2012.12.001
  15. Chakraborty, A. and Gopalakrishnan, S. (2003), "A spectrally formulated finite element for wave propagation analysis in functionally graded beams", Int. J. Solids Struct., 40(10), 2421-2448. https://doi.org/10.1016/S0020-7683(03)00029-5
  16. Chen, L., Nakamura, M., Schindler, T.D., Parker, D. and Bryant, Z. (2012), "Engineering controllable bidirectional molecular motors based on myosin", Nature Nanotech., 7(4), 252-256. https://doi.org/10.1038/nnano.2012.19
  17. Ebrahimi, F. (2013), "Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment", Mech. Adv. Mater. Struct., 20(10), 854-870. https://doi.org/10.1080/15376494.2012.677098
  18. Ebrahimi, F and Barati, M.R. (2016), "An exact solution for buckling analysis of embedded piezo-electromagnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
  19. Ebrahimi, F. and Hashemi, M. (2016), "On vibration behavior of rotating functionally graded double-tapered beam with the effect of porosities", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(10), 1903-1916. https://doi.org/10.1177/0954410015619647
  20. Ebrahimi, F. and Mokhtari, M. (2015), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Brazil. Soc. Mech. Sci. Eng., 37(4), 1435-1444. https://doi.org/10.1007/s40430-014-0255-7
  21. Ebrahimi, F. and Salari, E. (2015), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
  22. Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronautica, 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014
  23. Eltaher, M., Emam, S.A. and Mahmoud, F. (2012), "Free vibration analysis of functionally graded sizedependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
  24. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  25. Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  26. Ghadiri, M. and Shafiei, N. (2016), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 1077546315627723.
  27. Ghadiri, M., Shafiei, N. and Safarpour, H. (2016a), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 1-21.
  28. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 1-19.
  29. Goel, A. and Vogel, V. (2008), "Harnessing biological motors to engineer systems for nanoscale transport and assembly", Nature Nanotech., 3(8), 465-475. https://doi.org/10.1038/nnano.2008.190
  30. Guo, J., Kim, K., Lei, K.W. and Fan, D.L. (2015), "Ultra-durable rotary micromotors assembled from nanoentities by electric fields", Nanoscale, 7(26), 11363-11370. https://doi.org/10.1039/C5NR02347E
  31. Ilkhani, M. and Hosseini-Hashemi, S. (2016), "Size dependent vibro-buckling of rotating beam based on modified couple stress theory", Compos. Struct., 143, 75-83. https://doi.org/10.1016/j.compstruct.2016.02.013
  32. Jin, C. and Wang, X. (2015), "Accurate free vibration analysis of Euler functionally graded beams by the weak form quadrature element method", Compos. Struct., 125, 41-50. https://doi.org/10.1016/j.compstruct.2015.01.039
  33. Kapuria, S., Bhattacharyya, M. and Kumar, A. (2008), "Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402. https://doi.org/10.1016/j.compstruct.2007.01.019
  34. Khatua, S., Guerrero, J.M., Claytor, K., Vives, G., Kolomeisky, A.B., Tour, J.M. and Link, S. (2009), "Micrometer-scale translation and monitoring of individual nanocars on glass", ACS Nano, 3(2), 351-356. https://doi.org/10.1021/nn800798a
  35. Kiani, K. (2010), "A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect", Int. J. Mech. Sci., 52(10), 1343-1356. https://doi.org/10.1016/j.ijmecsci.2010.06.010
  36. Kiani, K. and Mehri, B. (2010), "Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories", J. Sound Vib., 329(11), 2241-2264. https://doi.org/10.1016/j.jsv.2009.12.017
  37. Koizumi, M. and Niino, M. (1995), "Overview of FGM Research in Japan", Mrs Bulletin, 20(1), 19-21.
  38. Kudernac, T., Ruangsupapichat, N., Parschau, M., Macia, B., Katsonis, N., Harutyunyan, S.R., Ernst, K.H. and Feringa, B.L. (2011), "Electrically driven directional motion of a four-wheeled molecule on a metal surface", Nature, 479(7372), 208-211. https://doi.org/10.1038/nature10587
  39. Larbi, L.O., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Mach., 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713
  40. Li, X.-F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
  41. Li, J., Wang, X., Zhao, L., Gao, X., Zhao, Y. and Zhou, R. (2014), "Rotation motion of designed nanoturbine", Sci. Reports, 4, p. 5846.
  42. Liu, Y., Flood, A.H., Bonvallet, P.A., Vignon, S.A., Northrop, B.H., Tseng, H.R., Jeppesen, J.O., Huang, T.J., Brough, B., Baller, M. and Magonov, S. (2005), "Linear artificial molecular muscles", J. Am. Chem. Soc., 127(27), 9745-9759. https://doi.org/10.1021/ja051088p
  43. Lubbe, A.S., Ruangsupapichat, N., Caroli, G. and Feringa, B.L. (2011), "Control of rotor function in lightdriven molecular motors", J. Organic Chem., 76(21), 8599-8610. https://doi.org/10.1021/jo201583z
  44. Murmu, T. and Pradhan, S. (2009), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E: Low-Dimens. Syst. Nanostruct., 41(7), 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004
  45. Murmu, T. and Adhikari, S. (2010a), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), p. 083514. https://doi.org/10.1063/1.3496627
  46. Murmu, T. and Adhikari, S. (2010b), "Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation", J. Appl. Phys., 108(12), p. 123507. https://doi.org/10.1063/1.3520404
  47. Narendar, S. (2011), "Mathematical modelling of rotating single-walled carbon nanotubes used in nanoscale rotational actuators", Defence Sci. J., 61(4), 317-324. https://doi.org/10.14429/dsj.61.1091
  48. Narendar, S. (2012), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia", Appl. Math. Comput., 219(3), 1232-1243. https://doi.org/10.1016/j.amc.2012.07.032
  49. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
  50. Pourasghar, A., Homauni, M. and Kamarian, S. (2015), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanobeam using the eringen nonlocal elasticity theory under axial load", Polymer Composites.
  51. Pradhan, K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B: Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027
  52. Pradhan, S. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E: Low-Dimens. Syst. Nanostruct., 42(7), 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004
  53. Romano, G. and Barretta, R. (2016), "Comment on the paper "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams by Meral Tuna & Mesut Kirca", Int. J. Eng. Sci., 109, 240-242. https://doi.org/10.1016/j.ijengsci.2016.09.009
  54. Romano, G. and Barretta, R. (2017), "Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams", Compos. Part B: Eng., 14, 184-188. DOI: 10.1016/j.compositesb.2017.01.008
  55. Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036
  56. Sankar, B. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
  57. Serreli, V., Lee, C.F., Kay, E.R. and Leigh, D.A. (2007), "A molecular information ratchet", Nature, 445(7127), 523-527. https://doi.org/10.1038/nature05452
  58. Sears, A. and Batra, R.C. (2004), "Macroscopic properties of carbon nanotubes from molecular-mechanics simulations", Phys. Rev. B, 69, 235406. https://doi.org/10.1103/PhysRevB.69.235406
  59. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008
  60. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E: Low-Dimens. Syst. Nanostruct., 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011
  61. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016c), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007
  62. Shu, C. (2012), Differential Quadrature and its Application in Engineering, Springer Science & Business Media.
  63. Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two‐dimensional incompressible navier-stokes equations", Int. J. Numer. Method. Fluids, 15(7), 791-798. https://doi.org/10.1002/fld.1650150704
  64. Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013
  65. Simsek, M. and Yurtcu, H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
  66. Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94, 7281 https://doi.org/10.1063/1.1625437
  67. Thai, H.-T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  68. Thai, H.-T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009
  69. Tuna, M. and Kirca, M. (2016), "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams", Int. J. Eng. Sci., 105, 80-92. https://doi.org/10.1016/j.ijengsci.2016.05.001
  70. Tierney, H.L., Murphy, C.J., Jewell, A.D., Baber, A.E., Iski, E.V., Khodaverdian, H.Y., McGuire, A.F., Klebanov, N. and Sykes, E.C.H. (2011), "Experimental demonstration of a single-molecule electric motor", Nature Nanotech., 6(10), 625-629. https://doi.org/10.1038/nnano.2011.142
  71. Van Delden, R.A., Ter Wiel, M.K., Pollard, M.M. and Vicario, J. (2005), "Unidirectional molecular motor on a gold surface", Nature, 437(7063), 1337-1340. https://doi.org/10.1038/nature04127
  72. Van Delden, R.A., Ter Wiel, M.K., Pollard, M.M., Vicario, J., Koumura, N. and Feringa, B.L. (2012), "Thermal buckling and postbuckling of laminated composite beams with temperature-dependent properties", Int. J. Non-Linear Mech., 47(3), 96-102. https://doi.org/10.1016/j.ijnonlinmec.2011.11.009
  73. Vosoughi, A.R., Malekzadeh, P., Banan, M.R. and Banan, M.R. (2012), "Thermal buckling and postbuckling of laminated composite beams with temperature-dependent properties", Int. J. Non-Linear Mech., 47(3), 96-102. https://doi.org/10.1016/j.ijnonlinmec.2011.11.009
  74. Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98, 124301 https://doi.org/10.1063/1.2141648
  75. Wang, K. and Wang, B. (2014), "Influence of surface energy on the non-linear pull-in instability of nanoswitches", Int. J. Non-Linear Mech., 59, 69-75. https://doi.org/10.1016/j.ijnonlinmec.2013.11.004
  76. Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401
  77. Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006
  78. Yang, J., Chen, Y., Xiang, Y. and Jia, X.L. (2008), "Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load", J. Sound Vib., 312(1), 166-181. https://doi.org/10.1016/j.jsv.2007.10.034
  79. Ying, J., Lu, C. and Chen, W. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
  80. Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux", Steel Compos. Struct., Int. J., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909
  81. Zhang, S., Liu, W.K. and Ruoff, R.S. (2004a), "Atomistic simulations of double-walled carbon nanotubes (DWCNTs) as rotational bearings", Nano Letters, 4(2), 293-297. https://doi.org/10.1021/nl0350276
  82. Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004b), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 70, 205430 https://doi.org/10.1103/PhysRevB.70.205430
  83. Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B, 71(19), 195404 https://doi.org/10.1103/PhysRevB.71.195404
  84. Zhang, Y., Liu, X. and Liu, G. (2007), "Thermal effect on transverse vibrations of double-walled carbon nanotubes", Nanotechnology, 18(44), 445701. https://doi.org/10.1088/0957-4484/18/44/445701
  85. Zhao, N., Qiu, P.Y. and Cao, L.L. (2012), "Development and application of functionally graded material", Advanced Materials Research, 562.

피인용 문헌

  1. Double harmonically excited nonlinear vibration of viscoelastic piezoelectric nanoplates subjected to thermo-electro-mechanical forces vol.26, pp.7, 2020, https://doi.org/10.1177/1077546319889785
  2. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2017, https://doi.org/10.12989/anr.2021.10.3.281