References
- Akgoz, B. and Civalek, O. (2014), "Shear deformation beam models for functionally graded microbeams with new shear correction factors", Compos. Struct., 112, 214-225. https://doi.org/10.1016/j.compstruct.2014.02.022
- Ansari, R. and Sahmani, S. (2012), "Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models", Commun. Nonlinear Sci. Numer. Simul., 17(4), 1965-1979. https://doi.org/10.1016/j.cnsns.2011.08.043
- Ansari, R., Sahmani, S. and Arash, B. (2010), "Nonlocal plate model for free vibrations of single-layered graphene sheets", Phys. Lett. A, 375(1), 53-62. https://doi.org/10.1016/j.physleta.2010.10.028
- Aranda-Ruiz, J., Loya, J. and Fernandez-Saez, J. (2012), "Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory", Compos. Struct., 94(9), 2990-3001. https://doi.org/10.1016/j.compstruct.2012.03.033
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
- Barretta, R., Feo, L., Luciano, R. and de Sciarra, F.M. (2015a), "Variational formulations for functionally graded nonlocal Bernoulli-Euler nanobeams", Compos. Struct., 129, 80-89. https://doi.org/10.1016/j.compstruct.2015.03.033
- Barretta, R., Feo, L., Luciano, R. and de Sciarra, F.M. (2015b), "A gradient Eringen model for functionally graded nanorods", Compos. Struct., 131, 1124-1131. https://doi.org/10.1016/j.compstruct.2015.06.077
- Barretta, R., Feo, L., Luciano, R., de Sciarra, F.M. and Penna, R. (2016a), "Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation", Compos. Part B: Eng., 100, 208-219. https://doi.org/10.1016/j.compositesb.2016.05.052
- Barretta, R., Feo, L., Luciano, R. and de Sciarra, F.M. (2016b), "Application of an enhanced version of the Eringen differential model to nanotechnology", Compos. Part B: Eng., 96, 274-280. https://doi.org/10.1016/j.compositesb.2016.04.023
- Bath, J. and Turberfield, A.J. (2007), "DNA nanomachines", Nature Nanotech., 2(5), 275-284. https://doi.org/10.1038/nnano.2007.104
- Bedard, T.C. and Moore, J.S. (1995), "Design and synthesis of molecular turnstiles", J. Am. Chem. Soc., 117(43), 10662-10671. https://doi.org/10.1021/ja00148a008
- Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247X(71)90110-7
- Bellman, R., Kashef, B. and Casti, J. (1972), "Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10(1), 40-52. https://doi.org/10.1016/0021-9991(72)90089-7
- Benvenuti, E. and Simone, A. (2013), "One-dimensional nonlocal and gradient elasticity: closed-form solution and size effect", Mech. Res. Commun., 48, 46-51. https://doi.org/10.1016/j.mechrescom.2012.12.001
- Chakraborty, A. and Gopalakrishnan, S. (2003), "A spectrally formulated finite element for wave propagation analysis in functionally graded beams", Int. J. Solids Struct., 40(10), 2421-2448. https://doi.org/10.1016/S0020-7683(03)00029-5
- Chen, L., Nakamura, M., Schindler, T.D., Parker, D. and Bryant, Z. (2012), "Engineering controllable bidirectional molecular motors based on myosin", Nature Nanotech., 7(4), 252-256. https://doi.org/10.1038/nnano.2012.19
- Ebrahimi, F. (2013), "Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment", Mech. Adv. Mater. Struct., 20(10), 854-870. https://doi.org/10.1080/15376494.2012.677098
- Ebrahimi, F and Barati, M.R. (2016), "An exact solution for buckling analysis of embedded piezo-electromagnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
- Ebrahimi, F. and Hashemi, M. (2016), "On vibration behavior of rotating functionally graded double-tapered beam with the effect of porosities", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(10), 1903-1916. https://doi.org/10.1177/0954410015619647
- Ebrahimi, F. and Mokhtari, M. (2015), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Brazil. Soc. Mech. Sci. Eng., 37(4), 1435-1444. https://doi.org/10.1007/s40430-014-0255-7
- Ebrahimi, F. and Salari, E. (2015), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
- Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronautica, 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014
- Eltaher, M., Emam, S.A. and Mahmoud, F. (2012), "Free vibration analysis of functionally graded sizedependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Ghadiri, M. and Shafiei, N. (2016), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 1077546315627723.
- Ghadiri, M., Shafiei, N. and Safarpour, H. (2016a), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 1-21.
- Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 1-19.
- Goel, A. and Vogel, V. (2008), "Harnessing biological motors to engineer systems for nanoscale transport and assembly", Nature Nanotech., 3(8), 465-475. https://doi.org/10.1038/nnano.2008.190
- Guo, J., Kim, K., Lei, K.W. and Fan, D.L. (2015), "Ultra-durable rotary micromotors assembled from nanoentities by electric fields", Nanoscale, 7(26), 11363-11370. https://doi.org/10.1039/C5NR02347E
- Ilkhani, M. and Hosseini-Hashemi, S. (2016), "Size dependent vibro-buckling of rotating beam based on modified couple stress theory", Compos. Struct., 143, 75-83. https://doi.org/10.1016/j.compstruct.2016.02.013
- Jin, C. and Wang, X. (2015), "Accurate free vibration analysis of Euler functionally graded beams by the weak form quadrature element method", Compos. Struct., 125, 41-50. https://doi.org/10.1016/j.compstruct.2015.01.039
- Kapuria, S., Bhattacharyya, M. and Kumar, A. (2008), "Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402. https://doi.org/10.1016/j.compstruct.2007.01.019
- Khatua, S., Guerrero, J.M., Claytor, K., Vives, G., Kolomeisky, A.B., Tour, J.M. and Link, S. (2009), "Micrometer-scale translation and monitoring of individual nanocars on glass", ACS Nano, 3(2), 351-356. https://doi.org/10.1021/nn800798a
- Kiani, K. (2010), "A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect", Int. J. Mech. Sci., 52(10), 1343-1356. https://doi.org/10.1016/j.ijmecsci.2010.06.010
- Kiani, K. and Mehri, B. (2010), "Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories", J. Sound Vib., 329(11), 2241-2264. https://doi.org/10.1016/j.jsv.2009.12.017
- Koizumi, M. and Niino, M. (1995), "Overview of FGM Research in Japan", Mrs Bulletin, 20(1), 19-21.
- Kudernac, T., Ruangsupapichat, N., Parschau, M., Macia, B., Katsonis, N., Harutyunyan, S.R., Ernst, K.H. and Feringa, B.L. (2011), "Electrically driven directional motion of a four-wheeled molecule on a metal surface", Nature, 479(7372), 208-211. https://doi.org/10.1038/nature10587
- Larbi, L.O., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Mach., 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713
- Li, X.-F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Li, J., Wang, X., Zhao, L., Gao, X., Zhao, Y. and Zhou, R. (2014), "Rotation motion of designed nanoturbine", Sci. Reports, 4, p. 5846.
- Liu, Y., Flood, A.H., Bonvallet, P.A., Vignon, S.A., Northrop, B.H., Tseng, H.R., Jeppesen, J.O., Huang, T.J., Brough, B., Baller, M. and Magonov, S. (2005), "Linear artificial molecular muscles", J. Am. Chem. Soc., 127(27), 9745-9759. https://doi.org/10.1021/ja051088p
- Lubbe, A.S., Ruangsupapichat, N., Caroli, G. and Feringa, B.L. (2011), "Control of rotor function in lightdriven molecular motors", J. Organic Chem., 76(21), 8599-8610. https://doi.org/10.1021/jo201583z
- Murmu, T. and Pradhan, S. (2009), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E: Low-Dimens. Syst. Nanostruct., 41(7), 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004
- Murmu, T. and Adhikari, S. (2010a), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), p. 083514. https://doi.org/10.1063/1.3496627
- Murmu, T. and Adhikari, S. (2010b), "Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation", J. Appl. Phys., 108(12), p. 123507. https://doi.org/10.1063/1.3520404
- Narendar, S. (2011), "Mathematical modelling of rotating single-walled carbon nanotubes used in nanoscale rotational actuators", Defence Sci. J., 61(4), 317-324. https://doi.org/10.14429/dsj.61.1091
- Narendar, S. (2012), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia", Appl. Math. Comput., 219(3), 1232-1243. https://doi.org/10.1016/j.amc.2012.07.032
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Pourasghar, A., Homauni, M. and Kamarian, S. (2015), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanobeam using the eringen nonlocal elasticity theory under axial load", Polymer Composites.
- Pradhan, K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B: Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027
- Pradhan, S. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E: Low-Dimens. Syst. Nanostruct., 42(7), 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004
- Romano, G. and Barretta, R. (2016), "Comment on the paper "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams by Meral Tuna & Mesut Kirca", Int. J. Eng. Sci., 109, 240-242. https://doi.org/10.1016/j.ijengsci.2016.09.009
- Romano, G. and Barretta, R. (2017), "Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams", Compos. Part B: Eng., 14, 184-188. DOI: 10.1016/j.compositesb.2017.01.008
- Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036
- Sankar, B. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
- Serreli, V., Lee, C.F., Kay, E.R. and Leigh, D.A. (2007), "A molecular information ratchet", Nature, 445(7127), 523-527. https://doi.org/10.1038/nature05452
- Sears, A. and Batra, R.C. (2004), "Macroscopic properties of carbon nanotubes from molecular-mechanics simulations", Phys. Rev. B, 69, 235406. https://doi.org/10.1103/PhysRevB.69.235406
- Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008
- Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E: Low-Dimens. Syst. Nanostruct., 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011
- Shafiei, N., Mousavi, A. and Ghadiri, M. (2016c), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007
- Shu, C. (2012), Differential Quadrature and its Application in Engineering, Springer Science & Business Media.
- Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two‐dimensional incompressible navier-stokes equations", Int. J. Numer. Method. Fluids, 15(7), 791-798. https://doi.org/10.1002/fld.1650150704
- Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013
- Simsek, M. and Yurtcu, H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
- Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94, 7281 https://doi.org/10.1063/1.1625437
- Thai, H.-T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
- Thai, H.-T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009
- Tuna, M. and Kirca, M. (2016), "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams", Int. J. Eng. Sci., 105, 80-92. https://doi.org/10.1016/j.ijengsci.2016.05.001
- Tierney, H.L., Murphy, C.J., Jewell, A.D., Baber, A.E., Iski, E.V., Khodaverdian, H.Y., McGuire, A.F., Klebanov, N. and Sykes, E.C.H. (2011), "Experimental demonstration of a single-molecule electric motor", Nature Nanotech., 6(10), 625-629. https://doi.org/10.1038/nnano.2011.142
- Van Delden, R.A., Ter Wiel, M.K., Pollard, M.M. and Vicario, J. (2005), "Unidirectional molecular motor on a gold surface", Nature, 437(7063), 1337-1340. https://doi.org/10.1038/nature04127
- Van Delden, R.A., Ter Wiel, M.K., Pollard, M.M., Vicario, J., Koumura, N. and Feringa, B.L. (2012), "Thermal buckling and postbuckling of laminated composite beams with temperature-dependent properties", Int. J. Non-Linear Mech., 47(3), 96-102. https://doi.org/10.1016/j.ijnonlinmec.2011.11.009
- Vosoughi, A.R., Malekzadeh, P., Banan, M.R. and Banan, M.R. (2012), "Thermal buckling and postbuckling of laminated composite beams with temperature-dependent properties", Int. J. Non-Linear Mech., 47(3), 96-102. https://doi.org/10.1016/j.ijnonlinmec.2011.11.009
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98, 124301 https://doi.org/10.1063/1.2141648
- Wang, K. and Wang, B. (2014), "Influence of surface energy on the non-linear pull-in instability of nanoswitches", Int. J. Non-Linear Mech., 59, 69-75. https://doi.org/10.1016/j.ijnonlinmec.2013.11.004
- Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401
- Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006
- Yang, J., Chen, Y., Xiang, Y. and Jia, X.L. (2008), "Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load", J. Sound Vib., 312(1), 166-181. https://doi.org/10.1016/j.jsv.2007.10.034
- Ying, J., Lu, C. and Chen, W. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
- Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux", Steel Compos. Struct., Int. J., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909
- Zhang, S., Liu, W.K. and Ruoff, R.S. (2004a), "Atomistic simulations of double-walled carbon nanotubes (DWCNTs) as rotational bearings", Nano Letters, 4(2), 293-297. https://doi.org/10.1021/nl0350276
- Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004b), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 70, 205430 https://doi.org/10.1103/PhysRevB.70.205430
- Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B, 71(19), 195404 https://doi.org/10.1103/PhysRevB.71.195404
- Zhang, Y., Liu, X. and Liu, G. (2007), "Thermal effect on transverse vibrations of double-walled carbon nanotubes", Nanotechnology, 18(44), 445701. https://doi.org/10.1088/0957-4484/18/44/445701
- Zhao, N., Qiu, P.Y. and Cao, L.L. (2012), "Development and application of functionally graded material", Advanced Materials Research, 562.
Cited by
- Double harmonically excited nonlinear vibration of viscoelastic piezoelectric nanoplates subjected to thermo-electro-mechanical forces vol.26, pp.7, 2020, https://doi.org/10.1177/1077546319889785
- Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2017, https://doi.org/10.12989/anr.2021.10.3.281