DOI QR코드

DOI QR Code

Effect of Composition of γ-Al2O3/SiO2 Mixed Support on Fischer-Tropsch Synthesis with Iron Catalyst

철 기반 촉매의 Fischer-Tropsch 합성에서 γ-Al2O3/SiO2 혼합 지지체 조성의 영향

  • Min, Seon Ki (Department of Energy, Materials & Chemical Engineering, Korea University of Technology & Education) ;
  • No, Seong-Rae (Department of Energy, Materials & Chemical Engineering, Korea University of Technology & Education) ;
  • You, Seong-sik (Department of Energy, Materials & Chemical Engineering, Korea University of Technology & Education)
  • 민선기 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 노성래 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 유성식 (한국기술교육대학교 에너지.신소재.화학공학부)
  • Received : 2017.02.28
  • Accepted : 2017.03.21
  • Published : 2017.06.01

Abstract

Fischer-Tropsch synthesis is the technology of converting a syngas (CO+$H_2$) derived from such as coal, natural gas and biomass into a hydrocarbon using a catalyst. The catalyst used in the Fischer-Tropsch synthesis consists of active metal, promoter and support. The types of these components and composition affect the reaction activity and product selectivity. In this study, we manufactured an iron catalyst using ${\gamma}-Al_2O_3/SiO_2$ mixed support (100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) by an impregnation method to investigate how the composition of ${\gamma}-Al_2O_3/SiO_2$ mixed support effects on the reaction activity and product selectivity. The physical properties of catalyst were analyzed by $N_2$ physical adsorption and X-Ray diffraction method. The Fischer-Tropsch synthesis was conducted at $300^{\circ}C$, 20bar in a fixed bed reactor for 60h. According to the results of the $N_2$ physical adsorption analysis, the BET surface area decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the pore volume and pore average diameter increase as the composition of ${\gamma}-Al_2O_3$ decreases except for the composition of ${\gamma}-Al_2O_3/SiO_2$ of 50/50 wt%. By the results of the X-Ray diffraction analysis, the particle size of ${\alpha}-Fe_2O_3$ decreases as the composition of ${\gamma}-Al_2O_3$ decreases. As a result of the Fischer-Tropsch synthesis, the CO conversion decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the selectivity of C1-C4 decreases until the composition of ${\gamma}-Al_2O_3$ was 25 wt%. In contrast, the selectivity of C5+ increases until the composition of ${\gamma}-Al_2O_3$ is 25 wt%.

Fischer-Tropsch 합성(F-T 합성)은 석탄, 바이오매스, 천연가스 등을 개질하여 얻은 합성 가스(CO, $H_2$)를 촉매를 이용하여 탄화수소로 전환 하는 기술이다. Fischer-Tropsch 합성에 이용되는 촉매는 활성 금속, 조촉매, 지지체로 구성되는데 이들의 종류와 조성은 반응의 활성 및 생성물 선택도에 영향을 미친다. 본 연구에서는 ${\gamma}-Al_2O_3$$SiO_2$ 혼합 지지체의 조성이 Fiscsher-Tropsch 반응의 활성과 생성물 선택도에 미치는 영향을 알아 보기위해, ${\gamma}-Al_2O_3/SiO_2$ 혼합 지지체를(100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) 이용하여 함침(impregnation)법으로 철 촉매를 제조하였다. 촉매의 물리적 특성은 질소 물리 흡착 법과 X-선 회절 분석법을 통해 분석 하였고, 고정층 반응기에서 Fischer-Trosch 반응을 $300^{\circ}C$, 20bar에서, 60시간 동안 수행 하였다. 촉매의 물리적 특성 분석 결과 촉매의 BET 표면적은 ${\gamma}-Al_2O_3$의 조성이 감소함에 따라 감소하였으며, 촉매 기공의 부피 및 평균 크기는 지지체 조성이 ${\gamma}-Al_2O_3/SiO_2$ (50/50 wt%)인 경우를 제외 하고 증가하는 경향을 보였다. 또한, X-선 회절 분석법을 통해 ${\alpha}-Fe_2O_3$의 입자 크기를 계산한 결과 ${\gamma}-Al_2O_3$의 조성이 감소함에 따라 입자 크기가 감소 하였다. Fischer-Tropsch 합성 결과 ${\gamma}-Al_2O_3$의 조성이 감소함에 따라 CO 전환율은 감소 하였으며, C1-C4의 선택도는 ${\gamma}-Al_2O_3$의 조성이 25 wt%일 때 까지 감소하였으며 이와 반대로, C5+의 선택도는 ${\gamma}-Al_2O_3$의 조성이 25 wt%일 때 까지 증가 하였다.

Keywords

References

  1. Kim, Y. H., Koo, K. Y. and Song, I. K., "A Simulation Study on SCR (Steam Carbon Dioxide Reforming) Process Optimization for Fischer-Tropsch Synthesis," Korean Chem. Eng. Res., 47(6), 700-704(2009).
  2. Ryu, S. H., Song, J. C. and Lee, W. Y., "Fischer-Tropsch synthesis over Fe/$iO_2$," Korean Chem. Eng. Res., 27(4), 489-495(1989).
  3. Na, J. G., Jung, I. H., Kshetrimayum, K. S., Park, S. H., Park, C. S. and Han, C. H., "Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor," Korean Chem. Eng. Res., 52(6), 826-833(2014). https://doi.org/10.9713/kcer.2014.52.6.826
  4. Li, T., Wang, H., Yang, Y., Xiang, H. and Li, Y., "Study of an ironnickel Bimetallic Fischer-Tropsch Synthesis Catalyst," Fuel Processing Technology, 118, 117-124(2014). https://doi.org/10.1016/j.fuproc.2013.08.015
  5. Kumabe, K., Sato, T., Matsumoto, K., Ishida, Y. and Hasegawa, T., "Production of Hydrocarbons in Fischer-Tropsch Synthesis with Fe-basedcatalyst: Investigations of Primary Kerosene Yield And Carbon Mass Balance," Fuel, 89, 2088-2095(2010). https://doi.org/10.1016/j.fuel.2010.02.018
  6. Al-Dossary, M. and Fierro, J. L. G., "Effect of High-temperature Pre-reduction in Fischer-Tropsch Synthesis on Fe/$ZrO_2$ Catalysts," Applied Catalysis, 499, 109-117(2015). https://doi.org/10.1016/j.apcata.2015.03.031
  7. Khiet, M., Thomas, E., Elderb, H. G., Leslie, H. G. and James, J. S., "Effect of High-temperature Pre-reduction in Fischer-Tropsch Synthesis on Fe/$ZrO_2$ Catalysts," Catalysis Communications, 65, 76-80(2015). https://doi.org/10.1016/j.catcom.2015.02.027
  8. Koo, H. M., Han, G. Y. and Bae, J. W., "Fischer-Tropsch Synthesis on the Cobalt Impregnated Catalyst Using Carbon-coated Ni/$SiO_2$," 33, 1565-1570(2016). https://doi.org/10.1007/s11814-015-0269-6
  9. Kim, C. U., Kim, Y. S., Chae, H. J., Jeong, K. E., Jeong, S. Y., Jun, K. W. and Lee, K. Y., "Effect of Cobalt Catalyst Type and Reaction Medium on Fischer-Tropsch Synthesis," Korean J. Chem. Eng., 27(3), 777-784(2010). https://doi.org/10.1007/s11814-010-0135-5
  10. Li, S., Krishnamoorthy, S., Li, A., Meitzner, G. D. and Iglesi, E., "Promoted Iron-Based Catalysts for the Fischer-Tropsch Synthesis: Design, Synthesis, Site Densities, and Catalytic Properties," Journal of Catalysis, 206, 202-217(2002). https://doi.org/10.1006/jcat.2001.3506
  11. Luo, M. and Davis, B. H., "Fischer-Tropsch Synthesis: Activation of Low-alpha Potassium Promoted Iron Catalysts," Fuel Processing Technology, 83, 49-65(2003). https://doi.org/10.1016/S0378-3820(03)00077-8
  12. Eliason, S. A. and Bartholomew, C. H., "Reaction and Deactivation Kinetics for Fischer-Tropsch Synthesis on Unpromoted and Potassium- promoted Iron Catalysts," Applied Catalysis, 186, 229-243 (1999). https://doi.org/10.1016/S0926-860X(99)00146-5
  13. Gaube, J. and Klein, H. F., "The Promoter Effect of Alkali in Fischer-Tropsch Iron and Cobalt Catalysts," Applied Catalysis, 350, 126-132(2008). https://doi.org/10.1016/j.apcata.2008.08.007
  14. Ali, S., Zabidi, N. A. M. and Subbarao, D., "Effect of Niobium Promoters on Iron-based Catalysts for Fischer-Tropsch Reaction," Jurnal of Fuel Chemistry and Technolog, 40, 48-53(2012). https://doi.org/10.1016/S1872-5813(12)60006-1
  15. Tauster, S. J., Fung, S. C., Baker, R. T. K. and Horsley, J. A., "Strong Ineractions in Supported-Metal Catalysts," Science, 211, 1121-1125(1981). https://doi.org/10.1126/science.211.4487.1121
  16. Bond, G. C., "Metal-Support and Metal-Additive Effects in Catalysis," Platinum Metals Rev., 27, 16-18(1983).
  17. Tauster, S. J., "Strong Metal-Support Interactions," Accounts of Chemical Research, 20, 390-394(1987).
  18. Schepers, F. J., van Senden, J. G., van Broekhoven, E. H. and Ponec, V., "On the Strong Metal-Support Interactions effects in the Reactions of Hydrocarbons," Journal of Catalysis, 94, 400-407 (1985). https://doi.org/10.1016/0021-9517(85)90205-2
  19. Colmenares, J. C., Magdziarz, A., Aramendia, M. A., Marinas, A., Marinas, J. M., Urbano, F. J. and Navio, J. A., "Influence of the Strong Metal Support Interaction Effect (SMSI) of Pt/$TiO_2$ and Pd/$TiO_2$ Systems in the Photocatalytic Biohydrogen Production from Glucose Solution," Catalysis Communications, 16, 1- 6(2011). https://doi.org/10.1016/j.catcom.2011.09.003
  20. Wielersa, A. F. H., Kocka, A. J. H. M., Hopa, C. E. C. A., Geus, J. W. and van Der Kraan, A. M., "The Reduction Behavior of Silica-supported and Alumina-supported Iron Catalysts: A Mössbauer and Infrared Spectroscopic Study," Journal of Catalysis, 117(1), 1-18(1989). https://doi.org/10.1016/0021-9517(89)90216-9
  21. Kolk, B. and Albers, A., "Mossbauer and x-ray Studies of the Structure of Iron-manganese Oxide Catalyst Precursors," Applied Catalysis, 37, 57-74(1988). https://doi.org/10.1016/S0166-9834(00)80751-4
  22. Jin, Y. and Datye, A. K., "Phase Transformations in Iron Fischer- Tropsch Catalysts during Temperature-Programmed Reduction," Journal of Catalysis, 196, 8-17(2000). https://doi.org/10.1006/jcat.2000.3024
  23. Rankin, J. L. and Bartholomew, C. H., "Effects of Calcination on the CO Hydrogenation Activity/selectivity Properties of Potassiumpromoted Iron/silica," Journal of Catalysis, 100, 526-532(1986). https://doi.org/10.1016/0021-9517(86)90125-9
  24. Lund, C. R. F. and Dumesic, J. A., "Strong Oxide-oxide Interactions in Silica-supported Magnetite Catalysts: IV. Catalytic Consequences of the Interaction in Water-gas Shift," Journal of Catalysis, 76, 93-100(1982). https://doi.org/10.1016/0021-9517(82)90240-8
  25. Keyvanloo, K., Heckera, W. C., Woodfield, B. F. and Bartholomew, C. H., "Highly Active and Stable Supported Iron Fischer-Tropsch Catalysts: Effects of Support Properties and $SiO_2$ Stabilizer on Catalyst Performance," Journal of Catalysis, 319, 220-231(2014). https://doi.org/10.1016/j.jcat.2014.08.015