DOI QR코드

DOI QR Code

Electrochemical Performance of Li4Ti5O12 with Graphene/CNT Addition for Lithium Ion Battery

리튬이온전지 음극활물질 Li4Ti5O12의 그래핀/CNT 첨가에 따른 전기화학적 특성

  • Kim, Sang Baek (Department of Chemical Engineering, Chungbuk National University) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
  • 김상백 (충북대학교 화학공학과) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2017.01.09
  • Accepted : 2017.02.13
  • Published : 2017.06.01

Abstract

$Li_4Ti_5O_{12}$ (LTO) is an anode material for lithium ion battery, and the cycle performance is very good. The volume change of LTO during insertion and deinsertion of lithium ion is very small, so the cyclibility is very high. In this experiment graphene and CNT was added to increase the low conductivity of LTO which is the weak point of LTO. When graphene was located on the surface of LTO the conductivity did not increase so much because of the nano size LTO. Addition of CNT increased the conductivity because of the formation of the conducting network between LTO particle and the graphene. Carbon material addition was changed before and after the LTO manufacturing, and the capacity and the cyclibility was compared.

$Li_4Ti_5O_{12}$ (LTO)는 리튬이차전지용 음극활물질로써 충방전에 따른 체적변화가 매우 적고, 삽입과 탈리 반응에 따른 높은 가역성 때문에 수명 특성이 좋다는 장점을 가지고 있다. 본 연구에서는 LTO의 단점인 낮은 전기전도도를 보완하고자 전도성이 좋은 탄소계열 소재인 그래핀과 CNT를 첨가 하였다. LTO입자가 나노 크기이므로, 그래핀이 LTO표면에 위치하여 전도성 향상을 시키기 어렵다고 생각했다. 따라서 추가로 CNT를 첨가시켜 LTO입자와 그래핀 사이에 전도성 네트워크를 형성하여, 그래핀만 첨가하였을 때 보다 전도성이 향상되었다. 또한 탄소물질의 첨가 시점을 LTO합성 전후로 나누어, 각각의 용량 및 수명특성의 효율을 비교해 보았다.

Keywords

References

  1. Yuan, T., Cai, R., Wang, K., Ran, R., Liu, S. and Shao, Z., "Combustion Synthesis of High-performance $Li_4Ti_5O_{12}$ for Secondary Li-ion Battery," Ceram. Int., 35, 1757-1768(2009). https://doi.org/10.1016/j.ceramint.2008.10.010
  2. Hong, S. C., Hong, H. P., Cho, B. W. and Na, B. K., "Effect of Heat Treatment on Electrochemical Characteristics of Spinel Lithium Titanium Oxide," Korean J. Chem. Eng., 27(1), 91-95(2010). https://doi.org/10.1007/s11814-009-0298-0
  3. Kim, S. H., Park, H., Jee, S. H. and Ahn, H. S., "Synthesis and Structural Properties of Lithium Titanium Oxide Powder As-synthesized by Two Step Calcination Process," Korean J. Chem. Eng., 26(2), 485-488(2009). https://doi.org/10.1007/s11814-009-0082-1
  4. Yi, R. J. and Jenq, G. D., "Synthesis of Entanglement Structure in Nanosized $Li_4Ti_5O_{12}$/multi-walled Carbon Nanotubes Composite Anode Material for Li-ion Batteries by Ball-milling-assisted Solidstate Reaction," J. Power Sources., 198, 294-297(2012). https://doi.org/10.1016/j.jpowsour.2011.09.063
  5. Huang, S., Wen, Z., Zhu, X. and Lin, Z., "Effects of Dopant on the Electrochemical Performance of $Li_4Ti_5O_{12}$ as Electrode Material for Lithium Ion Batteries," J. Power Sources, 165, 408-412(2007). https://doi.org/10.1016/j.jpowsour.2006.12.010
  6. Huang, S. H., Wen, Z. Y., Zhu, X. J. and Lin, Z. X., "Preparation and Electrochemical Performance of Spinel-Type Compounds $Li_4Al_yTi_{5-y}O_{12}$ (y=0, 0.10, 0.15, 0.25)," J. Electrochem. Soc., 152(1), A186-A190(2005). https://doi.org/10.1149/1.1833315
  7. Huang, S., Wen, Z., Zhang, J., Gu, Z. and Xu, X., "$Li_4Ti_5O_{12}$/Ag Composite as Electrode Materials for Lithium-ion Battery," Solid State Ionics, 177, 851-855(2006). https://doi.org/10.1016/j.ssi.2006.01.050
  8. Yu, H., Zhang, X., Jalbout, A. F., Yan, X., Pan, X. and Xie, H., "High-rate Characteristics of Novel Anode $Li_4Ti_5O_{12}$/polyacene Materials for Li-ion Secondary Batteries," Electrochim. Acta, 53, 4200-4204(2008). https://doi.org/10.1016/j.electacta.2007.12.052
  9. Wang, G., Xu, J., Wen, M., Cai, R., Ran, R. and Shao, Z., "Influence of High-energy Ball Milling of Precursor on the Morphology and Electrochemical Performance of $Li_4Ti_5O_{12}$-ball-milling Time," Solid State Ionics, 179, 946-950(2008). https://doi.org/10.1016/j.ssi.2008.03.032
  10. Yao, X. L., Xie, S., Nian, H. Q. and Chen, C. H., "Spinel $Li_4Ti_5O_{12}$ as a Reversible Material Down to 0V," J. Alloy. Compd., 465, 375-379(2008). https://doi.org/10.1016/j.jallcom.2007.10.113
  11. Xing, L., Meizhen, Q., Yongjian, H. and Zuolong, Y., "Preparation and Electrochemical Performance of $Li_4Ti_5O_{12}$ Carbon Nanotubes for Lithium Ion Battery," Electrochim. Acta, 55, 2978-2982(2010). https://doi.org/10.1016/j.electacta.2010.01.015
  12. Kiyoshi, N., Ryosuke, N., Tomoko, M. and Hiroshi, M., "Preparation of Particulate $Li_4Ti_5O_{12}$ Having Excellent Characteristics as an Electrode Active Material for Power Storage Cells," J. Power Sources, 117, 131-136(2003). https://doi.org/10.1016/S0378-7753(03)00169-1
  13. Zhu, N., Liu. W., Xue, M. Q., Xie, Z. A., Zhao, D., Zhang, M. N., Chen, J. T. and Cao, T. B., "Graphene as a Conductive Additive to Enhance the High-rate Capabilities of Electrospun $Li_4Ti_5O_{12}$ for Lithium-ion Batteries," Electrochim. Acta, 55, 5813-5818(2010). https://doi.org/10.1016/j.electacta.2010.05.029
  14. Guo, P., Song, H. H. and Chen, X. H., "Electrical Conductivity and Rate-capability of $Li_4Ti_5O_{12}$ as a Function of Heat-treatment Atmosphere," Electrochem. Commun., 11, 1320-1324(2009). https://doi.org/10.1016/j.elecom.2009.04.036
  15. Wang, D. H., Choi, D. W., Li, J., Yang, Z. G., Nie, Z. M., Kou, R., Hu, D. H., Wang, C. M., Saraf, L. V., Zhang, J. G., Aksay, I. A. and Liu, J., "Self-assembled $ETiO_2$-graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion," ACS Nano, 3, 907-914(2009). https://doi.org/10.1021/nn900150y
  16. Shi, Y., Wen, L. F. and Cheng, H.-M., "Nanosized $Li_4Ti_5O_{12}$/ Graphene Hybrid Materials with Low Polarization for High Rate Lithium Ion Batteris," J. Power Sources, 196, 8610-8617(2011). https://doi.org/10.1016/j.jpowsour.2011.06.002
  17. Joo, E., Kim, J., Hosono, E., Zhou, H. and Kudo, T., "Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries," Nano Lett., 8, 2277- 2282 (2008). https://doi.org/10.1021/nl800957b
  18. Park, H. K., "The Research and Development Trend of Cathode Materials in Lithium Ion Battery," J. Korean Electrochem. Soc., 11(3), 197-210(2008). https://doi.org/10.5229/JKES.2008.11.3.197