DOI QR코드

DOI QR Code

Effect of Humidity and Flooding on the Performance of Proton Exchange Membrane Fuel Cell

고분자전해질 연료전지의 성능에 미치는 습도와 플러딩의 영향

  • Received : 2017.01.12
  • Accepted : 2017.02.13
  • Published : 2017.06.01

Abstract

Humidity affect performance and durability of proton exchange membrane fuel cell (PEMFC). High humidity of gases generally enhance the performance, but high humidity have the danger of flooding. I-V performance, linear sweep voltammetry, cyclo voltammetry, and impedance of micro-channel cell measured with change of relative humidity (RH). Flooding phenomena started at RH 70%. Ion conductivity of membrane reached maximum value at RH 80%. Maximum current density of $1,700mA/cm^2$ (at 0.6 V) was obtained at RH 80%. Therefore the effect of ion conductivity increasement was higher than that of mass transfer decrease by flooding at RH 80%.

고분자전해질 연료전지에서 습도는 성능과 내구성에 많은 영향을 준다. 습도가 높아지면 일반적으로 성능이 향상되는데 높은 습도는 플러딩을 발생시킬 위험성도 있다. 미세 유로셀에서 상대습도를 변화시키며 I-V곡선, LSV, 사이클로 볼타메트리(CV), 임피던스을 측정했다. 70%이상에서 플러딩 현상이 발생함을 확인했다. 고분자막의 이온전도도는 상대습도 80%에서 최고값에 도달했고, 전극의 활성은 플러딩 후에도 상대습도 증가에 따라 상승했다. 상대습도 80%에서 최고 성능 $1,700mA/cm^2$(@0.6 V)을 얻었다. 상대습도 80%에서 플러딩에 의해 물질전달이 방해 받는 것에 비해 막의 이온전도도 향상이 성능에 더 큰 영향을 줌을 보였다.

Keywords

References

  1. Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program," J. Power Sources, 143(1-2), 191-196(2005). https://doi.org/10.1016/j.jpowsour.2004.12.003
  2. Perry, M. L. and Fuller, T. F., "A Historical Perspective of Fuel Cell Technology in the 20th Century," J. Electrochem. Soc, 149(7), S59-S67(2002).
  3. Mohamed El Amine Ben Amara, Sassi Ben Nasrallah, "Numerical Simulation of Droplet Dynamics in a Proton Exchange Membrane (PEMFC) Fuel Cell Micro-channel," International Journal of Hydrogen Energy, 40(2), 1333-1342(2015). https://doi.org/10.1016/j.ijhydene.2014.09.077
  4. Ali Bozorgnezhad, Mehrzad Shams, Homayoon Kanani, Mohammadreza Hasheminasab, Goodarz Ahmadi, "Two-phase Flow and Droplet Behavior Inmicrochannels of PEM Fuel Cell," Int. J. of Hhydrogen Energy, 41, 19164-19181(2016). https://doi.org/10.1016/j.ijhydene.2016.09.043
  5. Zhu, X., Liao, Q., Sui, P. C. and Djilali, N., "Numerical Investigation of Water Droplet Dynamics in a Low-temperature Fuel Cell Micro-channel: Effect of Channel Geometry," J. of Power Sources, 195, 801-812(2010). https://doi.org/10.1016/j.jpowsour.2009.08.021
  6. Guangli Hea, Yohtaro Yamazakia, Abuliti Abudulab, "The Effect of Wall Roughness on the Liquid Removal in Micro-channels Related to a Proton Exchange Membrane Fuel Cell(PEMFC), J. of Power Sources, 195, 1561-1568(2010). https://doi.org/10.1016/j.jpowsour.2009.09.052
  7. Donghui Wen, Huan Qi, Li Ma, Congda Lu, Gang LiKey, "Kinematics and Trajectory Analysis of the Fixed Abrasive Lapping Process in Machining of Interdigitated Micro-channels on Bipolarplates," Precision Engineering, 44, 192-202(2016). https://doi.org/10.1016/j.precisioneng.2015.12.005
  8. Roshandel, R., Arbabi, F. and Moghaddam, G. K., "Simulation of An Innovative Flow-field Design Based on a Bio Inspired Pattern for PEM Fuel Cells," Renew Energy, 41, 86-95(2012). https://doi.org/10.1016/j.renene.2011.10.008
  9. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  10. Song, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean Chem. Eng. Res., 51(1), 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68
  11. Jeong, J. J., Jeong, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Measurement of Hydrogen Crossover by Gas Chromatograph in PEMFC," Korean Chem. Eng. Res., 52(4), 425-429 (2014). https://doi.org/10.9713/kcer.2014.52.4.425