DOI QR코드

DOI QR Code

Effect of Different GC Columns on the Quantitative Analysis of Long Chain Alkyl Diols (LCDs)

특성이 다른 GC 컬럼이 long chain alkyl diols (LCDs)의 정량 분석에 미치는 영향

  • GAL, JONG-KU (Hanyang University, Department of Marine Science and Convergent Technology) ;
  • KIM, JUNG-HYUN (Korea Polar Research Institute, Division of Polar Paleoenvironment) ;
  • NAM, SEUNG-IL (Korea Polar Research Institute, Division of Polar Paleoenvironment) ;
  • SHIN, KYUNG-HOON (Hanyang University, Department of Marine Science and Convergent Technology)
  • 갈종구 (한양대학교 해양융합과학과) ;
  • 김정현 (극지연구소 극지고환경연구부) ;
  • 남승일 (극지연구소 극지고환경연구부) ;
  • 신경훈 (한양대학교 해양융합과학과)
  • Received : 2017.02.01
  • Accepted : 2017.03.24
  • Published : 2017.05.31

Abstract

Long chain alkyl diols (LCDs) have been reported in sediments from various marine environments. Rampen et al. (2012) introduced the paleo-sea surface temperature (SST) proxy, Long chain Diol Index (LDI) based on the relative abundance of $C_{30}$ 1,15-diol, $C_{28}$ 1,13-diol, and $C_{30}$ 1,13-diol. In general, CP-Sil5CB and DB-5ms columns have been used for the quantitative and qualitative analysis of LCDs with a GC-MS. In this study, we examined the effect of three different columns (CP-Sil5CB, HP-5ms and DB-5) on the quantitative analysis of LCDs using marine sediments from the East Sea of Korea and the western Arctic Ocean. In general, our study showed that the results of CP-Sil5CB differed significantly from those of HP-5ms and DB-5. However, the differences of the LDI-derived SSTs among three columns were $0.1-0.2^{\circ}C$ for the East Sea and $0.2-0.7^{\circ}C$ for the western Arctic Ocean, which were well within the calibration error range (${\pm}1{\sigma}$). Accordingly, our study showed that the use of different columns resulted in significant differences of LCDs concentrations, but its effect on the LDI was relatively insignificant. Therefore, it appears that the different columns can be used for the paleo-SST reconstruction in the East Sea and the western Arctic Ocean using the LDI proxy.

Long chain alkyl diols (LCDs)은 다양한 해양 환경 퇴적물에서 관측되고 있다. Rampen et al. (2012)은 해양 표층 퇴적물에서 분석된 LCDs 중 $C_{30}$ 1,15-diol, $C_{28}$ 1,13-diol, $C_{30}$ 1,13-diol를 이용하여 Long chain Diol Index (LDI)라는 고수온 프록시를 제시하였다. 일반적으로 LCDs의 정성 및 정량 분석은 CP-Sil5CB와 DB-5ms 컬럼을 사용해 GC-MS를 주 기반으로 한다. 본 연구에서는 서로 다른 해양환경(동해 및 서북극해)에서 획득한 해양퇴적물을 활용하여 특성이 다른 세가지 GC 컬럼(CP-Sil5CB, HP-5ms, DB-5)이 LCDs의 정량 분석에 미치는 영향을 검토하였다. 본 연구를 통해 일반적으로 CP-Sil5CB로 분석된 농도 결과가 HP-5ms와 DB-5로 분석된 농도 결과와 통계적으로 유의한 차이가 있는 것으로 확인되었다. 하지만 LDI로 복원된 표층수온의 컬럼 간 편차는 동해 퇴적물의 경우 $0.1-0.2^{\circ}C$, 서북극해 퇴적물의 경우 $0.2-0.7^{\circ}C$로 LDI의 calibration error 범위(${\pm}1{\sigma}$) 보다 작았다. 결론적으로 본 연구는 컬럼에 따라 LCDs의 정량 결과는 현저한 차이를 보일 수 있지만, LDI 프록시 값에 미치는 영향은 상대적으로 미비함을 보여 주었다. 따라서 LDI 프록시를 활용한 동해 및 서북극 해양 퇴적물의 고수온 복원에 특성이 다른 컬럼을 사용 할 수 있음을 시사하였다.

Keywords

References

  1. Atwood, A.R., J.K. Volkman and J.P. Sachs. 2014. Characterization of unusual sterols and long chain diols, triols, keto-ols and n-alkenols in El Junco Lake, Galapagos. Org. Geochem., 66: 80-89. https://doi.org/10.1016/j.orggeochem.2013.11.004
  2. Brassell, S.C., G. Eglinton, U. Marlowe and M. S. Pflaumann. 1986. Molecular stratigraphy: a new tool for climatic assessment. Nature., 320. 129-133. https://doi.org/10.1038/320129a0
  3. de Bar, M.W., D.J.C. Dorhout, E.C. Hopmans, S.W. Rampen, J.S. Sinninghe Damste and S. Schouten, 2016. Constraints on the application of long chain diol proxies in the Iberian Atlantic margin. Org. Geochem., 101: 184-195. https://doi.org/10.1016/j.orggeochem.2016.09.005
  4. de Leeuw, J.W., W.I.C. Rijpstra, P.A. Schenck and J.K. Volkman, 1983. Free, esterified and residual bound sterols in Black Sea Unit I sediments. Geochim. Cosmochim. Acta., 47: 455-465. https://doi.org/10.1016/0016-7037(83)90268-5
  5. de Leeuw, J.W.W. Irene, C. Rijpstra and P.A. Schenck, 1981. The occurrence and identification of $C_{30}$, $C_{31}$ and $C_{32}$ alkan-1, 15-diols and alkan-15-one-1-ols in Unit I and Unit II Black Sea sediments. Geochim. Cosmochim. Acta., 45: 2281-2285. https://doi.org/10.1016/0016-7037(81)90077-6
  6. Freeman, K.H. and S.G. Wakeham, 1992. Variations in the distributions and isotopic composition of alkenones in Black Sea particles and sediments. Org. Geochem., 19: 277-285. https://doi.org/10.1016/0146-6380(92)90043-W
  7. Hinrichs, K.U., R.R. Schneider, P.J. Muller and J. Rullkotter, 1999. A biomarker perspective on paleoproductivity variations in two Late Quaternary sediment sections from the Southeast Atlantic Ocean. Org. Geochem., 30: 341-366. https://doi.org/10.1016/S0146-6380(99)00007-8
  8. Ho, S.L. and T. Laepple, 2015. Glacial cooling as inferred from marine temperature proxies TEXH86 and UK'37. Earth Planet. Sci. Lett., 409: 15-22. https://doi.org/10.1016/j.epsl.2014.10.033
  9. Hopmans, E.C., J.W. . Weijers, E. Schefuss, L. Herfort, J.S. Sinninghe Damste and S. Schouten, 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett., 224: 107-116. https://doi.org/10.1016/j.epsl.2004.05.012
  10. Kim, J.-H., J. van der Meer, S. Schouten, P. Helmke, V. Willmott, F. Sangiorgi, N. Koc, E.C. Hopmans and J.S.S. Damste, 2010. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta., 74: 4639-4654. https://doi.org/10.1016/j.gca.2010.05.027
  11. Lopes dos Santos, R.A., M.I. Spooner, T.T. Barrows, P. De Deckker, J.S. Sinninghe Damste and S. Schouten, 2013. Comparison of organic (U K' 37, TEX H 86, LDI) and faunal proxies (foraminiferal assemblages) for reconstruction of late Quaternary sea surface temperature variability from offshore southeastern Australia. Paleoceanography., 28: 377-387. https://doi.org/10.1002/palo.20035
  12. Park, K.-A. and K.-R. Kim, 2010. Unprecedented coastal upwelling in the East/Japan Sea and linkage to long-term large-scale variations. Geophys. Res. Lett., 37: L09603.
  13. Polyak, L., S.T. Belt, P. Cabedo-Sanz, M. Yamamoto, and Y.-H. Park, 2016. Holocene sea-ice conditions and circulation at the Chukchi-Alaskan margin, Arctic Ocean, inferred from biomarker proxies. The Holocene., 26: 1810-1821. https://doi.org/10.1177/0959683616645939
  14. Prahl, F.G. and S.G. Wakeham, 1987. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature., 330: 367-369. https://doi.org/10.1038/330367a0
  15. Rampen, S.W., M. Datema, M. Rodrigo-Gamiz, S. Schouten, G.J. Reichart, and J.S. Sinninghe Damste, 2014. Sources and proxy potential of long chain alkyl diols in lacustrine environments. Geochim. Cosmochim. Acta., 144: 59-71. https://doi.org/10.1016/j.gca.2014.08.033
  16. Rampen, S.W., S. Schouten, S.G. Wakeham and J.S. Sinninghe Damste, 2007. Seasonal and spatial variation in the sources and fluxes of long chain diols and mid-chain hydroxy methyl alkanoates in the Arabian Sea. Org. Geochem., 38: 165-179. https://doi.org/10.1016/j.orggeochem.2006.10.008
  17. Rampen, S.W., V. Willmott, J.H. Kim, M. Rodrigo-Gamiz, E. Uliana, G. Mollenhauer, E. Schefuss, J.S.S. Damsté and S. Schouten, 2014. Evaluation of long chain 1,14-alkyl diols in marine sediments as indicators for upwelling and temperature. Org. Geochem., 76: 39-47. https://doi.org/10.1016/j.orggeochem.2014.07.012
  18. Rampen, S.W., V. Willmott, J.-H. Kim, E. Uliana, G. Mollenhauer, E. Schefuss, J.S. Sinninghe Damste and S. Schouten, 2012. Long chain 1,13- and 1,15-diols as a potential proxy for palaeotemperature reconstruction. Geochim. Cosmochim. Acta., 84: 204-216. https://doi.org/10.1016/j.gca.2012.01.024
  19. Rodrigo-Gamiz, M., S.W. Rampen, H. de Haas, M. Baas, S. Schouten and J.S. Sinninghe Damste, 2015. Constraints on the applicability of the organic temperature proxies U K' 37, TEX86 and LDI in the subpolar region around Iceland. Biogeosciences Discuss., 12: 1113-1153.
  20. Rodrigo-gamiz, M., S.W. Rampen, S. Schouten and J.S. Sinninghe. 2016. The impact of oxic degradation on long chain alkyl diol distributions in Arabian Sea surface sediments. Org. Geochem., 100: 1-9. https://doi.org/10.1016/j.orggeochem.2016.07.003
  21. Schouten, S., E.C. Hopmans, and E. Schefuss, 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett., 204: 265-274. https://doi.org/10.1016/S0012-821X(02)00979-2
  22. Sinninghe Damste, J.S., S. Rampen, W. Irene, C. Rijpstra, B. Abbas, G. Muyzer, and S. Schouten, 2003. A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in quaternary marine sediments: indicators for high-nutrient conditions. Geochim. Cosmochim. Acta., 67: 1339-1348. https://doi.org/10.1016/S0016-7037(02)01225-5
  23. Sun, M.Y., L. Zou, J. Dai, H. Ding, R.A. Culp and M.I. Scranton, 2004. Molecular carbon isotopic fractionation of algal lipids during decomposition in natural oxic and anoxic seawaters. Org. Geochem., 35: 895-908. https://doi.org/10.1016/j.orggeochem.2004.04.001
  24. Van Den Dool, H. and P.D. Kratz, 1963. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A., 11: 463-471. https://doi.org/10.1016/S0021-9673(01)80947-X
  25. Versteegh, G.J.M., H.-J. Bosch and J.W. De Leeuw, 1997. Potential palaeoenvironmental information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids; a critical review. Org. Geochem., 27: 1-13. https://doi.org/10.1016/S0146-6380(97)00063-6
  26. Versteegh, G.J.M., J.H.F. J. Ansen, J.W.D.E.L. Eeuw and R.R.S. Chneider, 2000. Mid-chain diols and keto-ols in SE Atlantic sediments: A new tool for tracing past sea surface water masses? Geochim. Cosmochim. Acta., 64: 1879-1892. https://doi.org/10.1016/S0016-7037(99)00398-1
  27. Volkman, J.K., S.M. Barrett, G.A. Dunstan and S.W. Jeffrey, 1992. $C_{30}-C_{32}$ alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae. Org. Geochem., 18: 131-138. https://doi.org/10.1016/0146-6380(92)90150-V
  28. Walsh, E.M., A.E. Ingalls and R.G. Keil, 2008. Sources and transport of terrestrial organic matter in Vancouver Island fjords and the Vancouver-Washington Margin: A multiproxy approach using ${\delta}^{13}$ Corg, lignin phenols, and the ether lipid BIT index. Limnol. Oceanogr., 53: 1054-1063. https://doi.org/10.4319/lo.2008.53.3.1054
  29. Willmott, V., S.W. Rampen, E. Domack, M. Canals, J.S. Sinninghe Damste and S. Schouten, 2009. Holocene changes in Proboscia diatom productivity in shelf waters of the north-western Antarctic Peninsula. Antarct. Sci., 22(1): 3-10. https://doi.org/10.1017/S095410200999037X
  30. Xing, L., J.P. Sachs, W. Gao, S. Tao, X. Zhao, L. Li, Y. Liu and M. Zhao, 2015. TEX86 paleothermometer as an indication of bottom water temperature in the Yellow Sea. Org. Geochem., 86: 19-31. https://doi.org/10.1016/j.orggeochem.2015.05.007
  31. Yamamoto, M., A. Shimamoto, T. Fukuhara, H. Naraoka, Y. Tanaka and A. Nishimura, 2007. Seasonal and depth variations in molecular and isotopic alkenone composition of sinking particles from the western North Pacific. Deep Sea Res. Part I Oceanogr. Res. Pap., 54: 1571-1592. https://doi.org/10.1016/j.dsr.2007.05.012
  32. Zell, C., J.-H. Kim, P. Moreira-Turcq, G. Abril, E.C. Hopmans, M.-P. Bonnet, R. Lima Sobrinho and J.S. Sinninghe Damste, 2013. Disentangling the origins of branched tetraether lipids and crenarchaeol in the lower Amazon River: Implications for GDGT-based proxies. Limnol. Oceanogr., 58: 343-353. https://doi.org/10.4319/lo.2013.58.1.0343

Cited by

  1. Assessing the saponification effect on the quantification of long chain alkenones and the U37 paleothermometer vol.52, pp.6, 2017, https://doi.org/10.2343/geochemj.2.0538
  2. Assessment of the nutrient diol index (NDI) as a sea surface nutrient proxy using sinking particles in the East Sea vol.231, pp.None, 2017, https://doi.org/10.1016/j.marchem.2021.103937