DOI QR코드

DOI QR Code

Turbidity Removal of Kaolin in an Electrocoagulation/Flotation Process Using a Mesh-type Aluminum Electrode

메시형 알루미늄 전극을 이용한 전기응집/부상 공정에서 Kaoline의 탁도 제거

  • Zheng, Chang (Department of Environmental Science, Catholic University of Daegu) ;
  • Kim, Dong-Seog (Department of Environmental Science, Catholic University of Daegu) ;
  • Park, Young-Seek (DU University College, Daegu University)
  • 정창 (대구가톨릭대학교 환경과학과) ;
  • 김동석 (대구가톨릭대학교 환경과학과) ;
  • 박영식 (대구대학교 기초교육대학)
  • Received : 2017.01.18
  • Accepted : 2017.03.13
  • Published : 2017.05.31

Abstract

The Electrocoagulation-Flotation (ECF) process has great potential in wastewater treatment. ECF technology is effective in the removal of colloidal particles, oil-water emulsion, organic pollutants such as microalgae, and heavy metals. Numerous studies have been conducted on ECF; however, many of them used a conventional plate-type aluminum anode. In this study, we determined the effect of changing operational parameters such as power supply time, applied current, NaCl concentration, and pH on the turbidity removal efficiency of kaoline. We also determined the effects of different electrolyte types (NaCl, $MgSO_4$, $CaCl_2$, $Na_2SO_4$, and tap water), as well as the differences caused by using a plate-type and mesh-type aluminum anode, on the turbidity removal efficiency. The results showed that the optimal values of ECF time, applied current, NaCl concentration, and pH were 5 min, 0.35 A, 0.4 g/L NaCl in distilled water, and pH 7, respectively. The results also revealed that the turbidity removal efficiency of kaoline in different electrolytes decreased in the following sequence, given the same conductivity: tap water > $CaCl_2$ > $MgSO_4$ > NaCl > $Na_2SO_4$. The turbidity removal efficiency of the mesh-type aluminum anode was significantly greater than the plate-type aluminum anode.

Keywords

References

  1. Alam, R., 2015, Fundamentals of electro-flotation and electrophoresis and applications in oil sand tailings management, Doctor Dissertation, University of Western Ontario, Ontario, Canada.
  2. Arslan-Alaton, I., Kabdasli, I., Vardar, B., Tunay, O., 2009, Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes, J. Hazard. Mater., 164(2-3), 1586-1594. https://doi.org/10.1016/j.jhazmat.2008.09.004
  3. Chen, G. H., 2004, Electrochemical technologies in wastewater treatment, Sep. Puri. Technol., 38(1), 11-41. https://doi.org/10.1016/j.seppur.2003.10.006
  4. Chou, W. L., Wang, C. T., Huang, K. Y., 2010, Investigation of process parameters for the removal of polyvinyl alcohol from aqueous solution by iron electrocoagulation, Desalination, 251(1-3), 12-19. https://doi.org/10.1016/j.desal.2009.10.008
  5. Elabbas, S., Ouazzani, N., Mandi, L., Berrekhis, F., Perdicakis, M. S., Pons, P. M. N., Lapicque, F., Leclerc, J. P., 2016, Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode, J. Hazard. Mater., 319, 66-77.
  6. Gao, P., Chen, X., Chen, F., Chen, G., 2005, Removal of chromium (VI) from wastewater by combined electrocoagulation-electroflotation without a filter, Sep. Puri. Technol., 43, 117-123. https://doi.org/10.1016/j.seppur.2004.10.008
  7. Gao, S. S., Yang, J. X., Tian, J. Y., Ma, F., Tu, G., Du, M. A., 2010, Electro-coagulation flotation process for algae removal, J. Hazard. Mater., 177(1-3), 336-343. https://doi.org/10.1016/j.jhazmat.2009.12.037
  8. Han, S. H., Chang, I. S., 2011, Fluoride and nitrate removal in small water treatment plants using electro-coagulation, J. Kor. Soc. Water Waste., 25(5), 767-775.
  9. Keshmirizadeh, E., Yousefi, S., Rofouei, M. K., 2011, An Investigation on the new operational parameter effective in Cr (VI) removal efficiency: A Study on electrocoagulation by alternating pulse current, J. Hazard. Mater., 190(1-3), 119-124. https://doi.org/10.1016/j.jhazmat.2011.03.010
  10. Kim, D. S., Park, Y. S., 2007, Study on bubble generation and size by dimensionally stable anode in electroflotation process, J. Kor. Environ. Sci., 16(10), 1189-1196.
  11. Kim, J. H., Yun, C. K., Lee, K. R., Oh, Y. K., Yeom, I. T., 2005, The optimization of sewage sludge solid-liquid separation using electroflotation (EF), Kor. J. Civ. Eng., 10, 404-407.
  12. Kobya, M., Demirbas, E., Can, O. T., Bayramoglu, M., 2006, Treatment of levafix orange textile dye solution by electrocoagulation, J. Hazard. Mater., 132(2-3), 183-188. https://doi.org/10.1016/j.jhazmat.2005.07.084
  13. Lee, J., 2004, Thickening of WPT sudge by flotation, Ms. Dissertation, Seoul National University, Seoul, Korea.
  14. Lin, S. H., Chen, M. L., 1997, Treatment of textile wastewater by chemical methods for reuse, Water. Res., 31(4), 868-876. https://doi.org/10.1016/S0043-1354(96)00318-1
  15. Liu, J. X., Zhu, Y., Tao, Y. J., Zhang, Y. M., Li, A. F., Li, T., Sang, M., Zhang, C. W., 2013, Freshwater microalgae harvested via flocculation induced by pH decrease, Biotechnol. Biofuels., 6, 98. https://doi.org/10.1186/1754-6834-6-98
  16. Lucero, A., Kim, D. S., Park, Y. S., 2017, Parameter optimization for cost reduction of microbubble generation by electrolysis, J. Environ. Sci. Int., 26(3), In press.
  17. Merzouk, B., Gourich, B., Sekki, A., Madani, K., Chibane, M., 2009, Removal turbidity and separation of heavy metals using electrocoagulation electroflotation technique: A Case study, J. Hazard. Mater., 164(1), 215-222. https://doi.org/10.1016/j.jhazmat.2008.07.144
  18. Mollah, M. Y. A., Schennach, R., Parga, J. R., Cocke, D. L., 2001, Electrocoagulation (EC) science and applications, J. Hazard. Mater., 84(1), 29-41. https://doi.org/10.1016/S0304-3894(01)00176-5
  19. Moreno-Casillasa, H. A., Cockea, D. L., Gomesa, J. A. G., Morkovskyb, P., Pargac, J. R., Petersona, E., 2007, Electrocoagulation mechanism for COD removal, Sep. Purif. Technol., 56(2), 204-211. https://doi.org/10.1016/j.seppur.2007.01.031
  20. Naver Wikipedia, 2016, http://terms.naver.com/entry.nhn?docId=2699804&cid=51610&categoryId=51610
  21. Park, Y. H., Han, M. Y., Ahn, H. J., Her, C. W., 2003, Characteristics of sludge thickening by electro-flotation, Spring Proceeding of Kor. Soc. Environ. Eng., 271-274.
  22. Park, Y. S., 2010, Turbidity treatment of $TiO_2$ wastewater by electrocoagulation/flotation process, J. Kor. Environ. Sci., 19(1), 89-96.
  23. Park, Y. S., Kim, D. S., 2009, Effect of operation parameter the removal of Rhodamine B by electrocoagulation/floating process, Proceedings of the Kor. Environ. Sci. Soc. Conf., 5-7.
  24. Sadeddin, K., Naser, A., Firas, A., 2011, Removal of turbidity and suspended solids by electro-coagulation to improve feed water quality of reverse osmosis plant, Desalination, 268(1), 204-207. https://doi.org/10.1016/j.desal.2010.10.027
  25. Sari, M. A., Chellam, S., 2015, Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation, J. Colloid. Inter. Sci., 458, 103-111. https://doi.org/10.1016/j.jcis.2015.07.035
  26. Shuman, T. R., Mason, G., Reeve, D., Schacht, A., Goodrich, A., Napan, K., Quinn, J., 2016, Low-energy input continuous flow rapid pre-concentration of microalgae through electro-coagulation flocculation, Chem. Eng. J., 297(1), 97-105. https://doi.org/10.1016/j.cej.2016.03.128
  27. So, J. H., Choi, S. I., Cho, C. H., 2002, A Study on the treatment of soil flushing effluent using electroflotation, J. Soil Groundwater Environ., 7(3), 79-84.
  28. Solak, M., Kilic, M., Huseyin, Y., Sencan, A., 2009, Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems, J. Hazard. Mater., 172(1), 345-352. https://doi.org/10.1016/j.jhazmat.2009.07.018
  29. Song, J. M., Han, M. Y., Chung, T. H., 2001, The effect of coagulation time on the turbidity removal efficiency, J. Kor. Soc. Water Waste., 15(1), 50-57.
  30. Uduman, N., Qi, Y., Danquah, M. K., Hoadley, A. F. A., 2010, Marine microalgae flocculation and focused beam reflectance measurement, Chem. Eng. J., 162(3), 935-940. https://doi.org/10.1016/j.cej.2010.06.046
  31. Wu, J. H., Liu, J. X., Lin, L. F., Zhang, C. W., Li, A. F., Zhu, Y., Zhang, Y. M., 2015, Evaluation of several flocculants for flocculating microalgae, Bioresource. Technol., 197, 495-501. https://doi.org/10.1016/j.biortech.2015.08.094
  32. Yoon, C. G., 2005, The optimization of sewage sludge solid-liquid separation using electroflotation (EF), Ms. Dissertation, Sungkyunkwan University, Seoul, Korea.
  33. Zheng, C., Park, Y. S., Kim, D. S., 2015, Bubble size of the electric floating process using Ti electrode, Proceedings of the Kor. Environ. Sci. Soc. Conf., 24, 115.