DOI QR코드

DOI QR Code

Korean-Style No-tillage Organic Agriculture on Recycled Ridge IV. Changes in Soil Microorganisms and Enzymes by Split Irrigation and Organic Matter Application in Organic Farming of Red Pepper in Plastic Film Greenhouse

두둑을 재활용한 한국형 무경운 유기 농업 IV. 분할관수와 유기물처리에 의한 시설 고추 유기재배 토양 미생물상과 토양 효소의 변화

  • 양승구 (전라남도농업기술원 친환경농업연구소) ;
  • 신길호 (전라남도농업기술원 친환경농업연구소) ;
  • 송용수 (전남대학교 농업생명과학대학 농화학과 친환경농업연구) ;
  • 김길용 (전남대학교 농업생명과학대학 농화학과 친환경농업연구) ;
  • 정우진 (전남대학교 농업생명과학대학 농화학과 친환경농업연구)
  • Received : 2017.02.06
  • Accepted : 2017.05.09
  • Published : 2017.05.31

Abstract

This study was carried out to investigate the changes in soil microorganisms and soil enzymes by split irrigation and organic matter application under no-tillage green house conditions. Soil bacteria and fungi abundances were higher in soybean cake fertilizer than in the soil without the soybean cake fertilizer under whole quantity irrigation. Bacteria and fungi abundances in soil increased with increasing organic fertilizer application rate. Bacteria and fungi amount in the soil increased at half division irrigation in no-treatment of soybean cake fertilizer compared with whole quantity irrigation. Actinomycete amount in the soil decreased with increasing soybean cake fertilizer with whole quantity irrigation while clearly increased in no-treatment of soybean cake fertilizer. Actinomycete amount in soil clearly increased with increasing organic fertilizer input at half division irrigation. Chitinase activity in the soil decreased in soybean cake fertilizer with increasing organic fertilizer input, while increased in no-treatment of soybean cake fertilizer. Chitinase activity in the soil increased at half division irrigation compared with whole quantity irrigation regardless of soybean cake fertilizer input. ${\beta}$-Glucosidase activity in the soil was higher in soybean cake fertilizer than in no-treatment of soybean cake fertilizer with whole quantity irrigation. ${\beta}$-Glucosidase activity in the soil increased with increasing organic fertilizer input, but decreased in above the standard level 66%. ${\beta}$-Glucosidase activity in the soil clearly increased in no-treatment of soybean cake fertilizer at half division irrigation compared with whole quantity irrigation. N-acetyl-${\beta}$-D-glucosaminidase activity was higher in soybean cake fertilizer than in no-treatment of soybean cake fertilizer with whole quantity irrigation. N-acetyl-${\beta}$-D-glucosaminidase activity in the soil increased with increasing organic fertilizer input, but decreased in above the standard level 66%. N-acetyl-${\beta}$-D-glucosaminidase activity in the soil was not significantly different at half division irrigation and whole quantity irrigation in organic fertilizer input, while increased at half division irrigation in no-treatment of soybean cake fertilizer. Acid phosphatase activity increased at standard level 66% in soybean cake fertilizer, while was not significantly different in no-treatment of soybean cake fertilizer. Spore density of Arbuscular Mycorrhizal Fungi (AMF) in the soil increased with increasing organic fertilizer input at whole quantity irrigation in no-treatment of soybean cake fertilizer, while decreased above the standard level 66% in organic fertilizer input. However, spore density of AMF in the soil was not significantly different in soybean cake fertilizer regardless of input amount of organic fertilizer. Root colonization rate of AMF in red pepper roots was not significant difference at two irrigations regardless of soybean cake input.

두둑과 고랑을 재활용한 한국형 무경운 농업에서 유기물 투입과 관수 효과를 구명하고자 무경운 토양에서 시험을 수행하였다. 1. 토양 미생물상 1회 전량관수 조건에서 대두박 투입 처리구의 토양 세균과 곰팡이 수는 대두박 무 투입구에 비하여 많았다. 그리고 유기질비료 투입량이 표준시비량 66%까지 증가되면 세균과 곰팡이 수는 증가되었으나, 그 이상에서는 세균과 곰팡이 수가 감소되는 경향이었다. 곰팡이/세균 비율은 관수 방법과 관계없이 대두박 투입 처리에서 0.6과 1.1로, 무투입 처리의 0.2와 0.5보다 2배 이상 높았다. 1회 전량 관수 조건에서 유기질 비료 시비량이 증가되면 대두박을 투입한 처리는 방선균 수는 감소되는 경향이었으나, 대두박 무투입에서는 증가되었다. 2회 분할 관수는 1회 전량관수에 비하여 대두박 무 투입 조건에서 세균과 곰팡이 수가 증가되었으나, 대두박 투입조건에서는 방선균 수가 증가되었다. 2. 토양 효소 유기질 비료의 시비량이 증가되면 토양 내 Chitinase 활성은 대두박 투입 토양에서 감소되고, 대두박 무 투입에서는 증가되는 경향이었다. 그러나 대두박을 투입에 관계없이 2회 분할 관수는 1회 전량관수에 비하여 Chitinase 활성이 증가되었다. 1회 전량관수 조건에서 대두박 투입 처리구의 ${\beta}$-Glucosidase 활성은 무투입에 비하여 높았으며, 유기질 비료 투입량이 증가되면 표준시비량의 66%까지는 ${\beta}$-Glucosidase 활성이 증가되었으나, 표준시비량에서는 감소되었다. 대두박 무투입 조건에서 2회 분할관수 토양 내 ${\beta}$-Glucosidase 활성은 1회 전량관수에 비하여 현저하게 증가되었다. 1회 전량관수 조건에서 대두박을 투입한 처리의 N-acetyl-${\beta}$-D-glucosaminidase의 활성은 무투입구에 비하여 높았다. 대두박 투입 처리에서 유기질 비료 투입량이 표준시비량의 66%까지 증가되면 N-acetyl-${\beta}$-D-glucosaminidase의 활성은 증가되었으나, 표준시비량에서는 유의적인 차이가 없었다. 대두박 무투입 조건에서 2회 분할관수는 1회 전량관수에 비하여 N-acetyl-${\beta}$-D-glucosaminidase의 활성은 증가되었다. 대두박 무투입 조건에서 유기질 비료 시비량이 표준량의 66% 수준에서는 토양 내 산성인산가수분해효소(Acid phosphatase)의 활성 높았다. 대두박 투입 조건에서는 유기질 비료 시비량이 증가되면 산성인산가수분해효소(Acid phosphatase)의 활성은 증가되는 경향이었다. 3. 토양 AMF 대두박 무투입 조건에서 유기질 비료의 투입량이 표준시비량의 66%까지 증가되면 토양의 내생균근균의(AMF) 포자수는 증가되었으나, 유기질 비료 투입량이 표준시비량에서는 근균의 포자수는 감소되었다. 그러나 대두박 투입에서 근균의 포자수는 유기질 비료 투입량에 따른 유의적인 차이가 없었다. 그리고 내생 근균의 고추 뿌리에 정착률은 대두박 투입량에 따른 유의적인 차이가 없었으며, 2회 분할 관수도 같은 경향이었다.

Keywords

References

  1. "미사리 삼국시기 밭 유구의 농업", 김기흥 국역사학회(Korean historical association) 보고서, 제146집 pp. 1-26.
  2. Anderson J. M. 1991. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol. Appl. 1: 326-437. https://doi.org/10.2307/1941761
  3. Bardgett, R. D. and E. McAlister. 1999. The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem selfregulation in temperate meadow grasslands. Biol. Fert. Soils. 29: 282-290. https://doi.org/10.1007/s003740050554
  4. Boerner, Ralph E. J., Kelly, L. M. Decker, Elaine kennedy sutherland. 2000. Prescribed burning effects on soil enzyme activity in a southern ohio hardwood forest: a landscape-scale analysis. Soil Biol. Biochem. 32: 899-908. https://doi.org/10.1016/S0038-0717(99)00208-4
  5. Boyle, S. A., R. R. Yarwood, P. J. Bottomley, and D. D. Myrold. 2008. Bacterial and fungal contributions to soil nitrogen cycling under douglas fir and red alder at two sites in oregon. Soil Biol. Biochem. 40: 443-451. https://doi.org/10.1016/j.soilbio.2007.09.007
  6. Chang, E. H., R. S. Chung, and Y. H. Tsai. 2007. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr. 53: 132-140. https://doi.org/10.1111/j.1747-0765.2007.00122.x
  7. Clegg, C. D. 2006. Impact of cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils. Appl. Soil Ecol. 31: 73-82. https://doi.org/10.1016/j.apsoil.2005.04.003
  8. Daniels, B. A. and H. D. Skipper. 1982. Methods for the recovery and quantitative estimation of propagules from soil. In: NC Schenck. Methods and principles of mycorrhizal research. St. Paul, Minn., USA: American Phytopathological Society. pp. 29-35.
  9. Lee, E. H., B. Y. Lee, Y. B. Lee, Y. S. Kwon, and J. W. Lee. 1998. Nitrate content and activities of nitrate reductase and glutamine synthease as affected by ionic strength, nitrate concentration, ratio of nitrate to ammonium in nutrient solution for culture of leaf lettuce and water dropwort. J. Kor. Soc. Hort. Sci. 39: 161-165.
  10. Eivazi, F. and M. A. Tabatabai. 1988. Glucosidases and agalactosidases in soils. Soil Biol. Biochem. 20: 601-606. https://doi.org/10.1016/0038-0717(88)90141-1
  11. Garcia-Gil J. C., Plaza C., Soler-Rovira P., and A. Polo. 2000. Long-term effects on municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 32: 1907-1913. https://doi.org/10.1016/S0038-0717(00)00165-6
  12. Hu, C. and Z. Cao. 2007. Size and activity of the soil microbial biomass and soil enzyme activity in long-term field experiments. World J. Agri. Sci. 3: 63-70.
  13. Kim, K. S., Y. B. Lee, S. J. Hwang, B. R. Jeong, and C. G. An. 2013. Irrigation method of nutrient solution affect growth and yield of paprika 'eyron' grown in rockwool and phenolic foam slabs. Kor. J. Hort. Sci. Technol. 31(2): 179-185.
  14. Kim, P. J., D. K. Lee, and D. Y. Chung. 1997. Effects of soil bulk density on saturated hydraulic conductivity and solute elution patterns. J. Korea Soc. Soil Sci. Fert. 30: 234-241.
  15. Kim. Y. H., J. H. Lim, C. H. An, B. K. Jung, and S. D. Kim. 2012. Soil microbial community analysis using soil enzyme activities in red pepper field treated microbial agents. J. Appl. Biol. Chem. 55(1): 47-53 https://doi.org/10.3839/jabc.2011.058
  16. Kirschbaum, M. U. F. 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem 31: 205-211.
  17. Lee, Y. H. and S. K. Ha. 2011. Impacts of chemical properties on microbial population from upland soils in gyeongnam province. Kor. J. Soil Sci. Fert. 44(2): 242-247. https://doi.org/10.7745/KJSSF.2011.44.2.242
  18. Lee, Y. H., M. K. Kim, and Y. S. Ok. 2012. The relationship between microbial characteristics and glomalin concentrations in paddy soils of gyeongnam province. Kor. J. Soil Sci. Fert. 45(5): 792-797. https://doi.org/10.7745/KJSSF.2012.45.5.792
  19. Nobili, D. M., M. Contin, and P. C. Brookes. 2006. Microbial biomass dynamics in recently air-dry for up to 103 years. Soil Biol. Biochem. 38: 2871-2881. https://doi.org/10.1016/j.soilbio.2006.04.044
  20. Park, K. C., Y. S. Kim, O. H. Kwon, T. R. Kwon, and S. G. Park. 2008. Effects of organic amendments on soil microbial community in red pepper field. Korean J. Soil Sci. Fert. 41(2): 118-125.
  21. Sarapatka, B., L. Dudova, and M. Krskova. 2004. Effect of pH and phosphate supply on acid phosphatase activity in cereal roots. Biologia, Bratislava, 59: 127-131.
  22. Skujins, J. 1976. Extracellular enzymes in soil. CRC Crit. Rev. Microbiol. 4: 383-421. https://doi.org/10.3109/10408417609102304
  23. Sohn, B. K., S. Y. Jin, H. L. Kim, J. S. Cho, and D. J. Lee, 2008. Improvement of arbuscular mycorrhizal fungi (AMF) propagule at the preplanting field for ginseng cultivation. Kor. J. Soil Sci. Fert. 41(3): 170-176.
  24. Tabatabai, M. A. 1982. Soil enzymes, pp. 903-947. In: Page, A. L., R. H. Miler, and D. R. Keeney. (eds.). Methods of soil analysis, Part 2. Chemical and microbiological properties, Amer. Soc. Agron. Madison, WI(USA).
  25. Tadesse, T., M. A. Nichols, and K. J. Fisher. 1999. Nutrient conductivity effects on sweet pepper plants grown using a nutrient film technique. 2. lossom-end rot and fruit mineral status. New Zealand J. Crop Hort. Sci. 27: 239-247. https://doi.org/10.1080/01140671.1999.9514102
  26. Trotta, A., G. C. Verese, E. Gnavi, A. Fusconi, S. Sampo, and G. Gerta. 1996. Interaction between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomos mosseae in tomato plants. Plant Soil. 185: 199-209. https://doi.org/10.1007/BF02257525
  27. Wasaki, J., T. Yamamura, T. Shinano and M. Osaki. 2003. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant Soil. 248: 129-136. https://doi.org/10.1023/A:1022332320384
  28. Wright, S. F. and A. Upadhyaya. 1996. Extraction of an abuneant and unusual protein from soil and comparison with hyhal protein from arbuscular mycorrhizal fungi. Soil Sci. 161: 575-585. https://doi.org/10.1097/00010694-199609000-00003
  29. Wright, S. F., J. L. Starr, and I. C. Paltineanu. 1999. Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci. Soc. Am. J. 63: 1825-1829. https://doi.org/10.2136/sssaj1999.6361825x
  30. Yang, S. K., D. I. Kim, H. K. Kim, J. K. Yang, Y. S. Han, and W. J. Jung. 2017. No-tillage agriculture of korean-style on recycled ridge. IV. Changes in ppepper yield and distribution of animalcule with split irrigation and organic matter at plastic film greenhouse soil in organic cultivation of no-tillage systems. Korean J. Soil Sci. Fert. 25(2): 329-344
  31. Yang, S. K., G. H. Shin, H. K. Kim, H. W. Kim, K. J. Choi, and W. J. Jung. 2015a. Changes of chemical properties and correlation under no-tillage silt loam soil with ridge cultivation of plastics film greenhouse condition. Korean J. Soil Sci. Fert. 48(3): 170-179. https://doi.org/10.7745/KJSSF.2015.48.3.170
  32. Yang, S. K., G. H. Shin, H. K. Kim, H. W. Kim, K. J. Choi, and W. J. Jung. 2015b. Effects of no-yillage and split irrigation on the growth of pepper organically cultivated under plastic film greenhouse condition. Korean J. Organic Agri. 23(4): 781-796. https://doi.org/10.11625/KJOA.2015.23.4.781
  33. Yang, S. K., G. H. Shin, S. K. Kim, D. I. Kim, and W. J. Jung. 2017. No-tillage agriculture of korean-style on recycled ridge III. Changes in pepper growth and biodiversity at plastic film greenhouse soil in organic cultivation of no-tillage systems. Korean J. Soil Sci. Fert. 25(1): 71-84.
  34. Yang, S. K,. Y. W. Seo, B. H. Kim, B. K. Sohn, C. D. Wee, J. H. Lee, W. J. Jung, and R. D. Park. 2011. Characteristics of spore density and colonization pattern of arbuscular mycorrhizal fungi on the no-tillage soil under greenhouse condition. Kor. J. Org. Agri. 19(3): 343-355.
  35. Yang, S. K., Y. W. Seo, J. H. Son, J. D. Park, K. J. Choi, and W. J. Jung. 2012. Properties of pepper growth and yield, cost down with no-tillage organic cultivation in vinyl greenhouse. Korean J. Org. Agri. 20(3): 411-422.
  36. Yang, S. K., Y. W. Seo, S. K. Kim, B. H. Kim, H. K. Kim, H. W. Kim, K. J. Choi, Y. S. Han, and W. J. Jung. 2014. Changes in physical properties especially, three phases, bulk density, porosity and correlations under no-tillage silt loam soil with ridge cultivation of rain proof plastic house. Korean J. Soil Sci. Fert. 47(4): 225-234. https://doi.org/10.7745/KJSSF.2014.47.4.225
  37. Yedidia, I., N. Benhamou, Y. Kapulnik, and I. Chet. 2000. Induction and accumulation of PR proteins activity during early stages of root colonization by the Mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38: 863-873. https://doi.org/10.1016/S0981-9428(00)01198-0