DOI QR코드

DOI QR Code

Performance Estimation Based on 4D Lookup Table Interpolating and Unit Cell Discharge Tests for Thermal Battery

4D Lookup Table Interpolating을 이용한 단위 전지 방전 시험 기반 열전지 성능 예측

  • Park, Byeong June (The 4th R&D Institute, Agency for Defense Development) ;
  • Kim, Ji Youn (The 4th R&D Institute, Agency for Defense Development) ;
  • Ha, Sang Hyeon (The 4th R&D Institute, Agency for Defense Development) ;
  • Cho, Jang Hyeon (The 4th R&D Institute, Agency for Defense Development)
  • 박병준 (국방과학연구소 4기술연구본부 4부) ;
  • 김지연 (국방과학연구소 4기술연구본부 4부) ;
  • 하상현 (국방과학연구소 4기술연구본부 4부) ;
  • 조장현 (국방과학연구소 4기술연구본부 4부)
  • Received : 2017.01.04
  • Accepted : 2017.04.10
  • Published : 2017.06.01

Abstract

For comparison to the Li-ion battery, evaluating a thermal battery must consider additional variables. The first one is the temperature difference between the battery and its unit cell. Thermal batteries and their unit cells have a temperature difference that is caused by the thermal battery activation mechanism and its shape. The second variable is the electrochemical reaction steps. Most Li-ion batteries have a constant electrochemical reaction at the electrode, and battery voltage is affected when the concentration of Li ions is changed. However, a thermal battery has several steps in its electrochemical reaction, and each step has a different potential. In this study, we used unit cell discharge tests based on interpolating a 4D lookup table to estimate the performance of a thermal battery. From the test results, we derived an estimation algorithm by interpolating the table, which is queried from specified profile groups. As a result, we found less than a 5 percent difference between estimation and experiment at the 1.3 V cut-off time.

Keywords

References

  1. R. A. Guidotti and P. Masset, J. Power Sources, 161, 1443 (2006). [DOI: https://doi.org/10.1016/j.jpowsour.2006.06.013]
  2. H. W. Cheong, S. H. Kang, J. M. Kim, and S. B. Cho, Journal of Ceramic Processing Research, 13, 198 (2012).
  3. Y. S. Choi, H. R. Yu, H. W. Cheong, S. B. Cho, and Y. S. Lee, Appl. Chem. Eng., 25, 161 (2014). [DOI: https://doi.org/10.14478/ace.2013.1123]
  4. G.C.S. Freitas, F. C. Peixoto, and A. S. Vianna Jr., J. Power Sources, 179, 424 (2008). [DOI: https://doi.org/10.1016/j.jpowsour.2007.11.084]
  5. R. A. Guidotti and P. Masset, J. Power Sources, 183, 388 (2008) [DOI: https://doi.org/10.1016/j.jpowsour.2008.04.090]
  6. H. J. Ji, Journal of KIMST, 11, 102 (2008).
  7. S. Fujiwara, M. Inaba, and A. Tasaka, J. Power Sources, 196, 4012 (2011). [DOI: https://doi.org/10.1016/j.jpowsour.2010.12.009]
  8. A. G. Bergman and A. S. Arabadshan, Russ. J. Inorg. Chem. (English Trans.), 8, 369 (1963).
  9. R. A. Guidotti and F. W. Reinhardt, Proc. the 33rd International Power Sources Conference (Electrochemical Society, New Jersey, 1988) p. 369.
  10. P. Masset, Ph.D. Thesis, National Polytechnic Institute of Grenoble, Grenoble (2002).
  11. J. R. Selman, D. K. DeNuccio, C. J. Sy, and R. K. Steunenberg, J. Electrochem. Soc., 124, 1160 (1977). [DOI: https://doi.org/10.1149/1.2133519]
  12. Y. S. Choi, H. R. Yu, H. W. Cheong, S. B. Cho, and Y. S. Lee, Appl. Chem. Eng., 25, 72 (2014). [DOI: https://doi.org/10.14478/ace.2013.1109]
  13. S. Schoeffert, J. Power Sources, 142, 361 (2005). [DOI: https://doi.org/10.1016/j.jpowsour.2004.09.038]
  14. S. Schoeffert, Proc. 40th Power Sources Conference (Electrochemical Society, New Jersey, 2002).