참고문헌
-
B. Berndtsson, Integral formulas for the
${\theta}{\overline{{\theta}}}$ -equation and zeros of bounded holomorphic functions in the unit ball, Math. Ann. 249 (1980), no. 2, 163-176. https://doi.org/10.1007/BF01351413 -
A. Bonami and P. Charpentier, Solutions de l'equation
$\overline{{\theta}}$ et zeros de la class de Nevanlinna dans certains domaines faiblement pseudoconvexes, Ann. Inst. Fourier (Grenoble) 32 (1982), 53-89. https://doi.org/10.5802/aif.894 -
J. Bruna and J. del Castillo, Holder and
$L^p$ -estimates for the$\overline{{\theta}}$ -equation in some convex domains with real-analytic boundary, Math. Ann. 296 (1984), no. 4, 527-539. -
J. Bruna, P. Charpentier, and Y. Dupain, Zero varieties for Nevanlinna class in convex domains of finite type in
$C^n$ , Ann. of Math. (2) 147 (1998), no. 2, 391-415. https://doi.org/10.2307/121013 - H. Cartan, Differential Forms, English transl., Hermann, Paris; Houghton-Mifflin, Boston, Mass., 1970.
- S. C. Chen andM. C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP, Studies in Advanced Mathematics, AMS, 2001.
-
P. L. Duren, Theory of
$H^p$ spaces, Academic Press, 1970. - L. Gruman, The zeros of holomorphic functions in strictly pseudoconvex domains, Trans. Amer. Math. Soc. 207 (1975), 163-174, https://doi.org/10.1090/S0002-9947-1975-0382725-X
-
L. K. Ha, Tangential Cauchy-Riemann equations on pseudoconvex boundaries of finite and infinite type in
$C^2$ (Preprint). -
L. K. Ha, Zero varieties for the Nevanlinna class in weakly pseudoconvex domains of finite/ infinite type in
$C^2$ (Preprint). - L. K. Ha and T. V. Khanh, Boundary regularity of the solution to the complex Monge- Ampere equation on pseudoconvex domains of infinite type, Math. Res. Lett. 22 (2015), no. 2, 467-484. https://doi.org/10.4310/MRL.2015.v22.n2.a7
-
L. K. Ha, T. V. Khanh, and A. Raich,
$L^p$ -estimates for the$\overline{{\theta}}$ -equation on a class of infinite type domains, Internat. J. Math. 25 (2014), no. 11, 1450106, 15 pages. - G. M. Henkin, Integral representations of functions holomorphic in strictly-pseudoconvex domains and some applications, Math. USSR Sbornik. 7 (1969), no. 4, 597-616. https://doi.org/10.1070/SM1969v007n04ABEH001105
- G. M. Henkin, The Lewy equation and analysis on pseudoconvex manifold, Russian Math. Surveys 32 (1977), no. 3, 59-130. https://doi.org/10.1070/RM1977v032n03ABEH001628
- G. M. Henkin, H. Lewy's equation and analysis on a pseudoconvex manifold II, Math. USSR Sbornik. 1 (1977), 63-94.
-
T. V. Khanh, Supnorm and f-Holder estimates for
$\overline{{\theta}}$ on convex domains of general type in$C^2$ , J. Math. Anal. Appl. 430 (2013), no. 2, 522-531. -
J. J. Kohn, Boundary behaviour of
$\overline{{\theta}}$ on weakly pseudoconvex manifolds of dimension two, J. Differentail Geom. 6 (1972), 523-542. https://doi.org/10.4310/jdg/1214430641 - P. Lelong, Integration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239-262.
- P. Lelong, Fonctions plurisousharmoniques et formes differentielles positives, Gordon and Breach, New York, Dunod, Paris, 1968.
- J. Noguchi and J. Winkelmann, Nevanlinna Theory in Several Complex Variables and Diophantine Approximation, Springer, Japan, 2014.
- R. M. Range, The Caratheodory metric and holomorphic maps on a class of weakly pseudoconvex domains, Pacific J. Math. 78 (1978), no. 1, 173-189. https://doi.org/10.2140/pjm.1978.78.173
-
R. M. Range, On the Holder estimates for
$\overline{{\theta}}$ u = f on weakly pseudoconvex domains, Several complex variables (Cortona, 1976/1977), pp. 247-67, Scuola Norm. Sup. Pisa, Pisa, 1978. - R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer-Vedag, Berlin/New York, 1986.
- A. V. Romanov, A formula and estimates for solutions of the tangential Cauchy-Riemann equation, Math. Sb. 99 (1976), 58-83.
-
W. Rudin, Function theory in the unit ball of
$C^n$ , Springer-Verlag, New York, 1980. -
M. C. Shaw, Holder and
$L^p$ estimates for$\overline{{\theta}}_b$ on weakly pseudoconvex boundaries in$C^2$ , Math. Ann. 279 (1988), no. 4, 635-652. https://doi.org/10.1007/BF01458533 -
M. C. Shaw, Prescribing zeros of functions in the Nevanlinna class on weakly pseudo-convex domains in
$C^2$ , Trans. Amer. Math. Soc. 313 (1989), no. 1, 407-418. https://doi.org/10.1090/S0002-9947-1989-0961629-5 - H. Skoda, Valeurs au bord pour les solutions de l'operateur d", et characterisation des zeros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), no. 3, 225-299.
-
J. Verdera,
$L^{\infty}$ -continuity of Henkin operators solving$\overline{{\theta}}$ in certain weakly pseudoconvex domains of$C^2$ , Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), no. 1-2, 25-33. https://doi.org/10.1017/S0308210500025932 - A. Weil, Sur les theorems de de Rham, Comment. Math. Helv. 26 (1952), 119-145. https://doi.org/10.1007/BF02564296
- G. Zampieri, Complex Analysis and CR Geometry, University Lecture Series, 43. American Mathematical Society, Providence, RI, 2008.