DOI QR코드

DOI QR Code

Dynamic response of thin plates on time-varying elastic point supports

  • Foyouzat, Mohammad A. (Department of Civil Engineering, Sharif University of Technology) ;
  • Estekanchi, Homayoon E. (Department of Civil Engineering, Sharif University of Technology)
  • Received : 2016.06.26
  • Accepted : 2017.03.09
  • Published : 2017.05.25

Abstract

In this article, an analytical-numerical approach is presented in order to determine the dynamic response of thin plates resting on multiple elastic point supports with time-varying stiffness. The proposed method is essentially based on transforming a familiar governing partial differential equation into a new solvable system of linear ordinary differential equations. When dealing with time-invariant stiffness, the solution of this system of equations leads to a symmetric matrix, whose eigenvalues determine the natural frequencies of the point-supported plate. Moreover, this method proves to be applicable for any plate configuration with any type of boundary condition. The results, where possible, are verified upon comparison with available values in the literature, and excellent agreement is achieved.

Keywords

References

  1. Akgoz, B. and Civalek, O. (2013), "Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory", Meccanica, 48(4), 863-873. https://doi.org/10.1007/s11012-012-9639-x
  2. Akgoz, B. and Civalek, O. (2012), "Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory", Mater. Des., 42, 164-171. https://doi.org/10.1016/j.matdes.2012.06.002
  3. Altekin, M. (2008), "Free linear vibration and buckling of superelliptical plates resting on symmetrically distributed pointsupports on the diagonals", Thin-Wall. Struct., 46(10), 1066-1086. https://doi.org/10.1016/j.tws.2008.01.032
  4. Altekin, M. (2014), "Large deflection analysis of point supported super-elliptical plates", Struct. Eng. Mech., 51(2), 333-347. https://doi.org/10.12989/sem.2014.51.2.333
  5. Bao, C. (2012), "Vibration-based system identification and damage detection of civil engineering structures", Ph.D. Dissertation, University of Western Australia, Australia.
  6. Bapat, A.V. and Suryanarayan, S. (1989), "Free vibrations of rectangular plates with interior point supports", J. Sound Vib., 134(2), 291-313. https://doi.org/10.1016/0022-460X(89)90653-6
  7. Barber, J.R., Grosh, K. and Oh, S. (2003), "Energy considerations in systems with varying stiffness", J. Appl. Mech., ASME, 70(4), 465-469. https://doi.org/10.1115/1.1574060
  8. Basu, B., Nagarajaiah, S. and Chakraborty, A. (2008), "Online identification of linear time-varying stiffness of structural systems by wavelet analysis", Struct. Hlth. Monit., 7(1), 21-36. https://doi.org/10.1177/1475921707081968
  9. Bradford, M.A. and Gilbert, R.I. (1990), "Time-dependent analysis and design of composite columns", J. Struct. Eng., ASCE, 116(12), 3338-3357. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:12(3338)
  10. Brogan, W.L. (1991), Modern Control Theory, Prentice-Hall, Englewood Cliffs, NJ, USA.
  11. Cox, H.L. and Boxer, J. (1960), "Vibration of rectangular plates point supported at the corners", Aeron. Quart., 11(1), 41-50. https://doi.org/10.1017/S0001925900001682
  12. Fan, S.C. and Cheung, Y.K. (1984), "Flexural free vibrations of rectangular plates with complex support conditions", J. Sound Vib., 93(1), 81-94. https://doi.org/10.1016/0022-460X(84)90352-3
  13. Farajpour, A., Shahidi, A.R., Mohammadi, M. and Mahzoon, M. (2012), "Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics", Compos. Struct., 94(5), 1605-1615. https://doi.org/10.1016/j.compstruct.2011.12.032
  14. Geng, Y., Ranzi, G., Wang, Y.Y. and Zhang, S.M. (2012), "Timedependent behaviour of concrete-filled steel tubular columns: Analytical and comparative study", Mag. Concr. Res., 64(1), 55-69. https://doi.org/10.1680/macr.2012.64.1.55
  15. Ghanem, R. and Romeo, F. (2000), "A wavelet-based approach for the identification of linear time-varying dynamical systems", J. Sound Vib., 234(4), 555-576. https://doi.org/10.1006/jsvi.1999.2752
  16. Ghanem, R. and Shinozuka, M. (1995), "Structural-system identification I: theory", J. Eng. Mech., ASCE, 121(2), 255-264. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:2(255)
  17. Hedayati, P., Azhari, M., Shahidi, A.R. and Bradford, M.A. (2007), "On the use of the Lagrange multiplier technique for the unilateral local buckling of point-restrained plates, with application to side-plated concrete beams in structural retrofit", Struct. Eng. Mech., 26(6), 673-685. https://doi.org/10.12989/sem.2007.26.6.673
  18. Johns, D.J. and Nataraja, R. (1972), "Vibration of a square plate symmetrically supported at four points", J. Sound Vib., 25(1), 75-82. https://doi.org/10.1016/0022-460X(72)90596-2
  19. Kerstens, J.G.M. (1979), "Vibration of a rectangular plate supported at an arbitrary number of points", J. Sound Vib., 65(4), 493-504. https://doi.org/10.1016/0022-460X(79)90899-X
  20. Kim, C.S. and Dickinson, S.M. (1987), "The flexural vibration of rectangular plates with point supports", J. Sound Vib., 117(2), 249-261. https://doi.org/10.1016/0022-460X(87)90537-2
  21. Leissa, A.W. (1969), Vibration of Plates, National Aeronautics and Space Administration, Washington, D.C., USA.
  22. Li, Q.S. (2000), "A new exact approach for analyzing free vibration of sdof systems with nonperiodically time varying parameters", J. Vib. Acoust., ASME, 122(2), 175-179. https://doi.org/10.1115/1.568455
  23. Li, Q.S. (2002), "Forced vibrations of single-degree-of-freedom systems with nonperiodically time-varying parameters", J. Eng. Mech., ASCE, 128(12), 1267-1275. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:12(1267)
  24. Liew, K.M. and Lam, K.Y. (1994), "Effects of arbitrarily distributed elastic point constraints on vibrational behaviour of rectangular plates", J. Sound Vib., 174(1), 23-36. https://doi.org/10.1006/jsvi.1994.1259
  25. Lin, C.C. and Soong, T.T. and Natke, H.G. (1990), "Real-time system identification of degrading structures", J. Eng. Mech., ASCE, 116(10), 2258-2274. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:10(2258)
  26. Lin, C.C., Wang, C.E., Wu, H.W. and Wang, J.F. (2005), "On-line building damage assessment based on earthquake records", Smart Mater. Struct., 14(3), S137-S153. https://doi.org/10.1088/0964-1726/14/3/017
  27. Liu, C.S. (2008a), "Identifying time-dependent damping and stiffness functions by a simple and yet accurate method", J. Sound Vib., 318(1), 148-165. https://doi.org/10.1016/j.jsv.2008.04.003
  28. Liu, C.S., Chang, J.R., Chang, K.H. and Chen, Y.W. (2008b), "Simultaneously estimating the time-dependent damping and stiffness coefficients with the aid of vibrational data", CMCTech Science Press, 7(2), 97-107.
  29. Liu, K. and Kujath, M.R. (1994), "Response of slowly timevarying systems to harmonic excitation", J. Sound Vib., 177(3), 423-432. https://doi.org/10.1006/jsvi.1994.1444
  30. Loh, C.H. and Tsaur, Y.H. (1988), "Time domain estimation of structural parameters", Eng. Struct., 10(2), 95-105. https://doi.org/10.1016/0141-0296(88)90035-1
  31. Narita, Y. and Hodgkinson, J.M. (2005). "Layerwise optimisation for maximising the fundamental frequencies of point-supported rectangular laminated composite plates", Compos. Struct., 69(2), 127-135. https://doi.org/10.1016/j.compstruct.2004.05.021
  32. Nowacki, W. (1953), Vibrations and buckling of rectangular plates simply supported on the periphery and at several points inside, Arch. Mech. Stos., 5(3), 437-454. (in Polish)
  33. Raju, I.S. and Amba-Rao, C.L. (1983), "Free vibration of square plate symmetrically supported at four points on the diagonals", J. Sound Vib., 90(2), 291-297. https://doi.org/10.1016/0022-460X(83)90537-0
  34. Ranzi, G., Leoni, G. and Zandonini, R. (2013), "State of the art on the time-dependent behaviour of composite steel-concrete structures", J. Constr. Steel Res., 80, 252-263. https://doi.org/10.1016/j.jcsr.2012.08.005
  35. Saadatpour, M.M., Azhari, M. and Bradford, M.A. (2000), "Vibration analysis of simply supported plates of general shape with internal point and line supports using the Galerkin method", Eng. Struct., 22(9), 1180-1188. https://doi.org/10.1016/S0141-0296(99)00073-5
  36. Shi, Z.Y. and Law, S.S. (2007), "Identification of linear timevarying dynamical systems using Hilbert transform and empirical mode decomposition method", J. Appl. Mech., ASME, 74(2), 223-230. https://doi.org/10.1115/1.2188538
  37. Soedel, W. (1993), Vibrations of Shells and Plates, Marcel Dekker, New York, NY, USA.
  38. Soong, T.T. (1990), Active Structural Control: Theory and Practice, Longman, New York, NY, USA.
  39. Spencer, B. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., ASCE, 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
  40. Staszewski, W.J. (1997), "Identification of damping in MDOF systems using time-scale decomposition", J. Sound Vib., 203(2), 283-305. https://doi.org/10.1006/jsvi.1996.0864
  41. Udwadia, F.E. and Jerath, N.(1980), "Time variations of structural properties during strong ground shaking", J. Eng. Mech. Div., ASCE, 106(1), 111-121.
  42. Wang, C., Ren, W.X., Wang, Z.C. and Zhu, H.P. (2013), "Instantaneous frequency identification of time-varying structures by continuous wavelet transform", Eng. Struct., 52, 17-25. https://doi.org/10.1016/j.engstruct.2013.02.006
  43. Wang, C.M., Xiang, Y. and Kitipornchai, S. (1997), "Optimal locations of point supports in laminated rectangular plates for maximum fundamental frequency", Struct. Eng. Mech., 5(6), 691-703. https://doi.org/10.12989/sem.1997.5.6.691
  44. Wang, Y., Geng, Y., Ranzi, G. and Zhang, S. (2011), "Timedependent behaviour of expansive concrete-filled steel tubular columns", J. Constr. Steel Res., 67(3), 471-483. https://doi.org/10.1016/j.jcsr.2010.09.007
  45. Watkins, R.J. and Barton Jr, O. (2010), "Characterizing the vibration of an elastically point supported rectangular plate using eigensensitivity analysis", Thin-Wall. Struct., 48(4), 327-333. https://doi.org/10.1016/j.tws.2009.11.005
  46. Watkins, R.J., Santillan, S., Radice, J. and Barton Jr, O. (2010), "Vibration response of an elastically point-supported plate with attached masses", Thin-Wall. Struct., 48(7), 519-527. https://doi.org/10.1016/j.tws.2010.02.005
  47. Wei, G.W., Zhao, Y.B. and Xiang, Y. (2002), "Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm", Int. J. Numer. Method. Eng., 55(8), 913-946. https://doi.org/10.1002/nme.526
  48. Wu, L.H. (2012), "Free vibrations of arbitrary quadrilateral thick plates with internal columns and uniform elastic edge supports by pb-2 Ritz method", Struct. Eng. Mech., 44(3), 267-288. https://doi.org/10.12989/sem.2012.44.3.267
  49. Xiang, Y., Zhao, Y.B. and Wei, G.W. (2002). "Discrete singular convolution and its application to the analysis of plates with internal supports. Part 2: Applications", Int. J. Numer. Method. Eng., 55(8), 947-971. https://doi.org/10.1002/nme.527
  50. Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002). "Plate vibration under irregular internal supports", Int. J. Solids Struct., 39(5), 1361-1383. https://doi.org/10.1016/S0020-7683(01)00241-4

Cited by

  1. A Series Solution for the Vibration of Mindlin Rectangular Plates with Elastic Point Supports around the Edges vol.2018, pp.1875-9203, 2018, https://doi.org/10.1155/2018/8562079