DOI QR코드

DOI QR Code

지반특성에 따른 토사재해 해석 모델 비교

Comparison of Analysis Model on Soil Disaster According to Soil Characteristics

  • 투고 : 2017.04.06
  • 심사 : 2017.05.19
  • 발행 : 2017.06.01

초록

본 연구에서는 도심지 토사재해 예비중점관리 대상지역 중 충주시 안림동, 대전광역시 부사동, 안동시 신안동 3개 연구지역을 선정하여 지반특성을 분석하였다. 연구지역별 특성(수관밀도, 뿌리점착력, 강우특성, 토질특성)을 이용하여 지반특성 간의 상관관계를 고찰하고, 토사재해 예측 모델링을 통해 위험지역을 예측하였다. 토사재해 위험지 예측 모델의 비교 분석을 위하여 산지토사재해 예측프로그램(LSMAP), Stability Index MAPping(SINMAP), 산림청의 산사태위험지도(LHMAP)를 활용하였으며, 토사재해 예측에 적합한 프로그램을 검토하였다. 토사재해 위험도 예측결과 일반적으로 사용되고 있는 SINMAP의 경우 과다한 범위를 위험지역으로 예측하고, 산림청 산사태위험지도(LHMAP)의 경우는 예측지역이 가장 적게 산정되었으며, LSMAP은 SINMAP 및 LHMAP의 중간 정도 범위의 지역을 위험지역으로 예측하였다. 이러한 예측 결과의 차이는 LSMAP이 비교된 두 모델에 비해 분석 매개변수가 비교적 다양하고, 공학적이기 때문인 것으로 판단되며 보다 정밀한 예측이 가능하다는 것을 알 수 있었다.

This study analyzed the ground characteristics region by designating 3 research areas, Anrim-dong in Chungju City, Busa-dong in Daejeon Metropolitan City and Sinan-dong in Andong City out of the areas subject to concentrated management to prepare for sediment disaster in downtown areas. The correlation between ground characteristics were observed by using characteristics (crown density, root cohesion, rainfall characteristics, soil characteristics) and the risk areas were predicted through sediment disaster prediction modeling. Landslide MAPping (LSMAP), Stability Index MAPping (SINMAP) and Landslide Hazard MAP (LHMAP) were used for the comparative analysis of the hazard prediction model for sediment disaster. As a result of predicting the sediment disaster danger, in case of SINMAP which was generally used, excessive range was predicted as a hazardous area and in case of the Korea Forest Service's landslide hazard map (LHMAP), the smallest prediction area was assessed. LSMAP predicted a medium range of SINMAP and LHMAP as hazardous area. The difference of the prediction results is that the analysis parameters of LSMAP is more diverse and engineering than two comparative models, and it is found that more precise prediction is possible.

키워드

참고문헌

  1. Braja M. D. (1998), Principles of geotechnical engineering, Fourth Edition, Thomson Learning, 764 p.
  2. Choi, Y. E. (2002), Trends in daily precipitation events and their extremes in the southern region of Korea, Korean Society of Environmental Impact Assessment 11, pp. 189-203.
  3. Dong, S. L. (1982), Surface variability theory, Hokkaido University Book Publishing Society, pp. 29-53.
  4. Holtz, W. G. and Gibbs, H. J. (1956), Triaxial shear tests on pervious gravelly soils, Journal, Soil Mechanics and Foundation, Div., ASCE, Vol. 82, No. SM 1, Proceeding Paper 867, pp. 1-12.
  5. Hong, W. P. (1991), Application of piles to landslides control, Korean Geotechnical Society, Vol. 7, No. 4, pp. 75-87.
  6. Hutchinson, J. N. (1988), Morphological and geotechnical parameters of landslides in relation to geology and hydrology, In Landslides Proc. 5th Int. Symp. on Landslides, 1, pp. 3-35.
  7. Iverson and Richard. M. (2000), Landslide triggering by rain infiltration, Water Resources Research, Vol. 36, No. 7, pp. 1897-1940. https://doi.org/10.1029/2000WR900090
  8. Kim, G. N. (2001), Study on the mothod of the sediment disaster risk assessment of mountainous watershed usinf GIS, Kangwon National University Graduate School, Dept. of Forestry.
  9. Kim, D. Y., Lee, S. H. and Im, S. J. (2011), Analysis of the effect of tree roots on soil reinforcement considering its spatial distribution, Journal of the Korea Society of Environmental Restoration Tecnology, Vol. 14, No. 4, pp. 41-54.
  10. Korea Forest Research Institute (2011), 6th National forest inventory and forest health monitering, pp. 34-36.
  11. Korea Forest Service (2016), Forest soil digital mapping, National Spatial Information Clearinghouse, GRS80/TM/1:25,000.
  12. Lambe, T. W. and Whitman, R. V. (1969), Soil mechanics, John Wiley and Sons, New York, 553 p.
  13. Lee, I. M., Sung, S. G. and Im, C. M. (1991), An experimental study on the effect of vegetation roots on slope stability of hillside slopes, Journal of the Korean Geotechnical Society, Vol. 7, No. 2, pp. 51-66.
  14. Lee, C. W. (2005), Trends of depths and missings caused by natural and sediment disasters in Korea. 2005, Jour. Korean. For. Soc. 94, pp. 252-257.
  15. Ma, H. S. and Jeong, W. O. (2007), Analysis of landslides characteristics in Korean National Parks, Journal of Korean Forest Society, Vol. 96, No. 6, pp. 611-619.
  16. Oh, J. and Park, H. J. (2014), Analysis of landslide triggering tainfall threshold for prediction of landslide occurrence, Journal of Korean Society Hazard Mitigation, Vol. 14, No. 2, pp. 115-129. https://doi.org/10.9798/KOSHAM.2014.14.2.115
  17. Park, N. W., Chi, K. H. and Jang, D. H. (2008), Application of statistical spatial data integration models to susceptibility analysis of induced by typhoon RUSA in Gangneung area. 2004, Jour. Korean. Geo. Ass. 11, pp. 69-80
  18. Park, C. M., Ma, H. S., Kang, W. S., Oh, K. W., Park, S. H. and Lee, S. J. (2010), Analysis of landslide characteristics in Jeonlabuk-do, Korea, Journal of Agriculture & Life Science Vol. 44, No. 4, pp. 9-20.
  19. Roering, J. J., Schmidt, K. M., Stock, J. D., Dietrich, W. E. and Montgomery, D. R. (2003), Shallow landsliding, root reinforcement and the spatial distribution of trees in the Oregon Coast Range, Canadian Geotechnical Journal, Vol. 40, No. 2, pp. 237-253. https://doi.org/10.1139/t02-113
  20. Wu, T. H. (1976), Investigation of landslides on Prince of Wales Island, Alaska. Ohio State Univ., Dept. of Civil Eng., Geotech. Eng. Rpt. No. 5, 94 p.
  21. Wu, T. H., McKinnell III, W. P. and Swanston, D. N. (1979), Strength of tree roots and landslides on Prince of Wales Island, Alaska, Canadian Geotechnical Journal, Vol. 16, No. 1, pp. 19-33. https://doi.org/10.1139/t79-003