DOI QR코드

DOI QR Code

Influence of the MgO-TiO2 Co-Additive Content on the Phase Formation, Microstructure and Fracture Toughness of MgO-TiO2-Reinforced Dental Porcelain Nanocomposites

  • Waiwong, Ranida (Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University) ;
  • Ananta, Supon (Department of Physics and Materials Science, Faculty of Science, Chiang Mai University) ;
  • Pisitanusorn, Attavit (Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University)
  • Received : 2016.12.19
  • Accepted : 2017.02.27
  • Published : 2017.03.31

Abstract

The influence of the co-additive concentration (0 - 45 wt% with an interval of 5 wt%) of MgO-$TiO_2$ on the phase formation, microstructure and fracture toughness of MgO-$TiO_2$-reinforced dental porcelain nanocomposites derived from a one-step sintering technique were examined using a combination of X-ray diffraction, scanning electron microscopy and Vickers indentation. It was found that MgO-$TiO_2$-reinforced dental porcelain nanocomposites exhibited significantly higher fracture toughness values than those observed in single-additive (MgO or $TiO_2$)-reinforced dental porcelain composites at any given sintering temperature. The amount of MgO-$TiO_2$ as a co-additive was found to be one of the key factors controlling the phase formation, microstructure and fracture toughness of these nanocomposites. It is likely that 30 wt% of MgO-$TiO_2$ as a co-additive is the optimal amount for $MgTi_2O_5$ and $Mg_2SiO_4$ crystalline phase formation to obtain the maximum relative density (96.80%) and fracture toughness ($2.60{\pm}0.07MPa{\cdot}m^{1/2}$) at a sintering temperature of $1000^{\circ}C$.

Keywords

References

  1. A. Pisitanusorn, W. Schulle, and S. Ananta, "The Influence of Crystalline Phase Additions on the Mechanical Properties of Dental Ceramic Materials: Ceramic Materials Reinforced with Alumina-Based Nanocomposites," Interceram, 55 [4] 250-53 (2006).
  2. P. J. Babu, R. K. Alla, V. R. Alluri, S. R. Datla, and A. Konakanchi, "Dental Ceramics: Part I An Overview of Composition, Structure and Properties," Am. J. Mater. Eng. Tech., 3 [1] 13-8 (2015).
  3. P. C. Guess, S. Schultheis, E. A. Bonfante, P. G. Coelho, J. L. Ferencz and N. R. Silva, "All-Ceramic Systems: Laboratory and Clinical Performance," Dent. Clin. North Am., 55 [2] 333-52 (2011). https://doi.org/10.1016/j.cden.2011.01.005
  4. S. J. Saint-Jean, "Dental Glasses and Glass-Ceramics," pp. 255-77 in Advanced Ceramics for Dentistry, Butterworth-Heinemann, Oxford, 2014.
  5. R. Morena, P. E. Lockwood, L. Evans, and C. W. Fairhurst, "Toughening of Dental Porcelain by Tetragonal $Zro_2$ Additions," J. Am. Ceram. Soc., 69 [4] C-75-7 (1986).
  6. C. Sanitnapapong, A. Pisitanusorn, and S. Ananta, "Effects of Tempering Time on Phase Formation and Microstructural Evolution of Zirconia Modified-Dental Porcelain Ceramics," Chiang Mai J. Sci., 38 [2] 176-86 (2011).
  7. W. H. Tuan, R. Z. Chen, T. C. Wang, C. H. Cheng, and P. S. Kuo, "Mechanical Properties of $Al_2O_3/Zro_2$ Composites," J. Eur. Ceram. Soc., 22 [16] 2827-33 (2002). https://doi.org/10.1016/S0955-2219(02)00043-2
  8. N. Montoya, F. J. Serrano, M. M. Reventos, J. M. Amigo, and J. Alarcon, "Effect of $TiO_2$ on the Mullite Formation and Mechanical Properties of Alumina Porcelain," J. Eur. Ceram. Soc., 30 [4] 839-46 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.10.009
  9. C. Y. Tan, R. Tolouei, I. Sopyan, and W. D. Teng, "Synthesis of High Fracture Toughness of Hydroxyapatite Bioceramics," Adv. Mater. Res., 264 1849-55 (2011).
  10. D. Ragurajan, M. Satgunam, and M. Golieskardi, "The Role of Magnesium Oxide on the Mechanical Properties of YTZP Ceramic," pp. 21-5 in Proceedings of the International Conference on Advances In Mechanical. Aeronautical and Production Techniques, Kuala Lumpur, Malaysia, 2014.
  11. H. Manshor, S. M. Aris, A. Z. A. Azhar, E. C. Abdullah, and Z. A. Ahmad, "Effects of $TiO_2$ Addition on the Phase, Mechanical Properties, and Microstructure of Zirconia-Toughened Alumina Ceramic Composite," Ceram. Int., 41 [3] 3961-67 (2015). https://doi.org/10.1016/j.ceramint.2014.11.080
  12. L. Jiang, X.-Y. Chen, G.-M. Han, and Y. Meng, "Effect of Additives on Properties of Aluminium Titanate Ceramics," Trans. Nonferrous Met. Soc. China, 21 [7] 1574-79 (2011). https://doi.org/10.1016/S1003-6326(11)60899-6
  13. I. Shindo, "Determination of the Phase Diagram by the Slow Cooling Float Zone Method: The System MgO-$TiO_2$," J. Cryst. Growth, 50 [4] 839-51 (1980). https://doi.org/10.1016/0022-0248(80)90146-3
  14. S. Filipovic, N. Obradovic, V. Pavlovic, V. Petrovic, and M. Mitric, "Influence of Mechanical Activation on Structural and Electrical Properties of Sintered $MgTiO_3$ Ceramics," Sci. Sintering, 41 [2] 117-23 (2009). https://doi.org/10.2298/SOS0902117F
  15. V. Martinac, "Effect of $TiO_2$ Addition on the Sintering Process of Magnesium Oxide from Seawater," pp. 309-22 in Sintering of Ceramics - New Emerging Techniques. Ed. by A. Lakshmanan, Intech, Rijeka, 2012.
  16. N. Vudhivanich, A. Pisitanusorn, and S. Ananta, "Effects of Zirconia Content on Leucite Crystallization and Microstructural Evolution of Dental Porcelain Ceramic-Nanocomposites," Chiang Mai J. Sci., 41 [2] 435-46 (2014).
  17. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements," J. Am. Ceram. Soc., 64 [9] 533-38 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  18. A. Franco Junior and D. J. Shanafield, "Thermal Conductivity of Polycrystalline Aluminum Nitride (AlN) Ceramics," Ceramica, 50 [315] 247-53 (2004). https://doi.org/10.1590/S0366-69132004000300012
  19. J. H. She and K. Ueno, "Effect of Additive Content on Liquid- Phase Sintering on Silicon Carbide Ceramics," Mater. Res. Bull., 34 [10] 1629-36 (1999). https://doi.org/10.1016/S0025-5408(99)00172-5
  20. I. W. Chen and X. H. Wang, "Sintering Dense Nanocrystalline Ceramics without Final-Stage Grain Growth," Nature, 404 [6774] 168-71 (2000). https://doi.org/10.1038/35004548
  21. C.-J. Wang, C.-Y. Huang, and Y.-C. Wu, "Two-Step Sintering of Fine Alumina-Zirconia Ceramics," Ceram. Int., 35 [4] 1467-72 (2009). https://doi.org/10.1016/j.ceramint.2008.08.001
  22. Z. Z. Fang and H. Wang, "13 - Sintering of Ultrafine and Nanosized Ceramic and Metallic Particles," pp. 431-73 in Ceramic Nanocomposites. Ed by R. Banerjee and I. Manna, Woodhead Publishing, Cambridge, 2013.
  23. M. H. Fathi and M. Kharaziha, "Two-Step Sintering of Dense, Nanostructural Forsterite," Mater. Lett., 63 [17] 1455-58 (2009). https://doi.org/10.1016/j.matlet.2009.03.040
  24. F. Funabiki, T. Kamiya, and H. Hosono, "Doping Effects in Amorphous Oxides," J. Ceram. Soc. Jpn, 120 [1407] 447-57 (2012). https://doi.org/10.2109/jcersj2.120.447
  25. E. N. Culea, P. Pascuta, M. Pustan, D. R. Tamas-Gavrea, L. Pop, and I. Vida-Simiti, "Effects of Eu:Ag Codoping on Structural, Magnetic and Mechanical Properties of Lead Tellurite Glass Ceramics," J. Non-Cryst. Solids, 408 18-25 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.10.002
  26. S. D. Skrovanek and R. C. Bradt, "Microhardness of a Fine- Grain-Size $Al_2O_3$," J. Am. Ceram. Soc., 62 [3-4] 215-16 (1979). https://doi.org/10.1111/j.1151-2916.1979.tb19059.x
  27. R. Narayan, P. Kumta, C. Sfeir, D.-H. Lee, D. Choi, and D. Olton, "Nanostructured Ceramics in Medical Devices: Applications and Prospects," JOM, 56 [10] 38-43 (2004). https://doi.org/10.1007/s11837-004-0289-x
  28. R. W. Rice, "Ceramic Tensile Strength-Grain Size Relations: Grain Sizes, Slopes, and Branch Intersections," J. Mater. Sci., 32 [7] 1673-92 (1997). https://doi.org/10.1023/A:1018511613779
  29. C. Suryanarayana, "Structure and Properties of Nanocrystalline Materials," Bull. Mater. Sci., 17 [4] 307-46 (1994). https://doi.org/10.1007/BF02745220
  30. P. Palmero, "Structural Ceramic Nanocomposites: A Review of Properties and Powders' Synthesis Methods," Nanomaterials, 5 [2] 656-96 (2015). https://doi.org/10.3390/nano5020656
  31. K. Niihara, "New Design Concept of Structural Ceramics," J. Ceram. Soc. Jpn, 99 974-82 (1991). https://doi.org/10.2109/jcersj.99.974
  32. J. D. Kuntz, G.-D. Zhan, and A. K. Mukherjee, "Nanocrystalline-Matrix Ceramic Composites for Improved Fracture Toughness," MRS Bull., 29 [01] 22-7 (2004). https://doi.org/10.1557/mrs2004.12
  33. C. Santos, K. Strecker, S. A. Baldacim, O. M. M. da Silva, and C. R. M. da Silva, "Influence of Additive Content on the Anisotropy in Hot-Pressed $Si_3N_4$ Ceramics Using Grain Orientation Measurements," Ceram. Int., 30 [5] 653-59 (2004). https://doi.org/10.1016/j.ceramint.2003.07.011
  34. U. Ichiro, "Effects of Additives on Piezoelectric and Related Properties of $PbTiO_3$ Ceramics," Jpn. J. Appl. Phys., 11 [4] 450 (1972). https://doi.org/10.1143/JJAP.11.450
  35. R. O. Ritchie, "Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids," Int. J. Fract., 100 [1] 55-83 (1999). https://doi.org/10.1023/A:1018655917051
  36. Y.-M. Miao, Q.-L. Zhang, H. Yang, and H.-P. Wang, "Low-Temperature Synthesis of Nano-Crystalline Magnesium Titanate Materials by the Sol-Gel Method," Mater. Sci. Eng., 128 [1-3] 103-6 (2006). https://doi.org/10.1016/j.mseb.2005.11.019
  37. B. Tang, H. Li, P. Fan, S. Yu, and S. Zhang, "The Effect of Mg:Ti Ratio on the Phase Composition and Microwave Dielectric Properties of $MgTiO_3$ Ceramics Prepared by One Synthetic Process," J. Mater. Sci.: Mater. Electron., 25 [6] 2482-86 (2014). https://doi.org/10.1007/s10854-014-1899-x
  38. L. Todan, T. Dascalescu, S. Preda, C. Andronescu, C. Munteanu, D. C. Culita, A. Rusu, R. State, and M. Zaharescu, "Porous Nanosized Oxide Powders in the MgO-$TiO_2$ Binary System Obtained by Sol-Gel Method," Ceram. Int., 40 [10] 15693- 701 (2014). https://doi.org/10.1016/j.ceramint.2014.07.092
  39. M. D. Lind and R. M. Housley, "Crystallization Studies of Lunar Igneous Rocks: Crystal Structure of Synthetic Armalcolite," Science, 175 [4021] 521-23 (1972). https://doi.org/10.1126/science.175.4021.521
  40. J. L. X. F. Chen, T. T. Feng, Y. S. Jiang, X. H. Zhang, H. T. Wu, and Y. L. Yue, "Study on the Synthesis of Nano-Crystalline $Mg_2SiO_4$ Powders by Aqueous Sol-Gel Process," Key Eng. Mater., 538 142-45 (2013). https://doi.org/10.4028/www.scientific.net/KEM.538.142
  41. R. Kamalian, A. Yazdanpanah, F. Moztarzadeh, R. Ravarian, Z. Moztarzadeh, M. Tahmasbi, and M. Mozafari, "Synthesis and Characterisation of Bioactive Glass/Forsterite Nanocomposites for Bone and Dental Implants," Ceram.- Silik., 56 [4] 331-40 (2012).
  42. L. Cheng, P. Liu, X. Chen, W. Niu, G. Yao, C. Liu, X. Zhao, Q. Liu, and H. Zhang, "Fabrication of Nanopowders by High Energy Ball Milling and Low Temperature Sintering of $Mg_2SiO_4$ Microwave Dielectrics," J. Alloys Compd., 513 373-77 (2012). https://doi.org/10.1016/j.jallcom.2011.10.051
  43. S. Ni and J. Chang, "In vitro Degradation, Bioactivity, and Cytocompatibility of Calcium Silicate, Dimagnesium Silicate, and Tricalcium Phosphate Bioceramics," J. Biomater. Appl., 24 [2] 139-58 (2009). https://doi.org/10.1177/0885328208094745