References
- A. Pisitanusorn, W. Schulle, and S. Ananta, "The Influence of Crystalline Phase Additions on the Mechanical Properties of Dental Ceramic Materials: Ceramic Materials Reinforced with Alumina-Based Nanocomposites," Interceram, 55 [4] 250-53 (2006).
- P. J. Babu, R. K. Alla, V. R. Alluri, S. R. Datla, and A. Konakanchi, "Dental Ceramics: Part I An Overview of Composition, Structure and Properties," Am. J. Mater. Eng. Tech., 3 [1] 13-8 (2015).
- P. C. Guess, S. Schultheis, E. A. Bonfante, P. G. Coelho, J. L. Ferencz and N. R. Silva, "All-Ceramic Systems: Laboratory and Clinical Performance," Dent. Clin. North Am., 55 [2] 333-52 (2011). https://doi.org/10.1016/j.cden.2011.01.005
- S. J. Saint-Jean, "Dental Glasses and Glass-Ceramics," pp. 255-77 in Advanced Ceramics for Dentistry, Butterworth-Heinemann, Oxford, 2014.
-
R. Morena, P. E. Lockwood, L. Evans, and C. W. Fairhurst, "Toughening of Dental Porcelain by Tetragonal
$Zro_2$ Additions," J. Am. Ceram. Soc., 69 [4] C-75-7 (1986). - C. Sanitnapapong, A. Pisitanusorn, and S. Ananta, "Effects of Tempering Time on Phase Formation and Microstructural Evolution of Zirconia Modified-Dental Porcelain Ceramics," Chiang Mai J. Sci., 38 [2] 176-86 (2011).
-
W. H. Tuan, R. Z. Chen, T. C. Wang, C. H. Cheng, and P. S. Kuo, "Mechanical Properties of
$Al_2O_3/Zro_2$ Composites," J. Eur. Ceram. Soc., 22 [16] 2827-33 (2002). https://doi.org/10.1016/S0955-2219(02)00043-2 -
N. Montoya, F. J. Serrano, M. M. Reventos, J. M. Amigo, and J. Alarcon, "Effect of
$TiO_2$ on the Mullite Formation and Mechanical Properties of Alumina Porcelain," J. Eur. Ceram. Soc., 30 [4] 839-46 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.10.009 - C. Y. Tan, R. Tolouei, I. Sopyan, and W. D. Teng, "Synthesis of High Fracture Toughness of Hydroxyapatite Bioceramics," Adv. Mater. Res., 264 1849-55 (2011).
- D. Ragurajan, M. Satgunam, and M. Golieskardi, "The Role of Magnesium Oxide on the Mechanical Properties of YTZP Ceramic," pp. 21-5 in Proceedings of the International Conference on Advances In Mechanical. Aeronautical and Production Techniques, Kuala Lumpur, Malaysia, 2014.
-
H. Manshor, S. M. Aris, A. Z. A. Azhar, E. C. Abdullah, and Z. A. Ahmad, "Effects of
$TiO_2$ Addition on the Phase, Mechanical Properties, and Microstructure of Zirconia-Toughened Alumina Ceramic Composite," Ceram. Int., 41 [3] 3961-67 (2015). https://doi.org/10.1016/j.ceramint.2014.11.080 - L. Jiang, X.-Y. Chen, G.-M. Han, and Y. Meng, "Effect of Additives on Properties of Aluminium Titanate Ceramics," Trans. Nonferrous Met. Soc. China, 21 [7] 1574-79 (2011). https://doi.org/10.1016/S1003-6326(11)60899-6
-
I. Shindo, "Determination of the Phase Diagram by the Slow Cooling Float Zone Method: The System MgO-
$TiO_2$ ," J. Cryst. Growth, 50 [4] 839-51 (1980). https://doi.org/10.1016/0022-0248(80)90146-3 -
S. Filipovic, N. Obradovic, V. Pavlovic, V. Petrovic, and M. Mitric, "Influence of Mechanical Activation on Structural and Electrical Properties of Sintered
$MgTiO_3$ Ceramics," Sci. Sintering, 41 [2] 117-23 (2009). https://doi.org/10.2298/SOS0902117F -
V. Martinac, "Effect of
$TiO_2$ Addition on the Sintering Process of Magnesium Oxide from Seawater," pp. 309-22 in Sintering of Ceramics - New Emerging Techniques. Ed. by A. Lakshmanan, Intech, Rijeka, 2012. - N. Vudhivanich, A. Pisitanusorn, and S. Ananta, "Effects of Zirconia Content on Leucite Crystallization and Microstructural Evolution of Dental Porcelain Ceramic-Nanocomposites," Chiang Mai J. Sci., 41 [2] 435-46 (2014).
- G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements," J. Am. Ceram. Soc., 64 [9] 533-38 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
- A. Franco Junior and D. J. Shanafield, "Thermal Conductivity of Polycrystalline Aluminum Nitride (AlN) Ceramics," Ceramica, 50 [315] 247-53 (2004). https://doi.org/10.1590/S0366-69132004000300012
- J. H. She and K. Ueno, "Effect of Additive Content on Liquid- Phase Sintering on Silicon Carbide Ceramics," Mater. Res. Bull., 34 [10] 1629-36 (1999). https://doi.org/10.1016/S0025-5408(99)00172-5
- I. W. Chen and X. H. Wang, "Sintering Dense Nanocrystalline Ceramics without Final-Stage Grain Growth," Nature, 404 [6774] 168-71 (2000). https://doi.org/10.1038/35004548
- C.-J. Wang, C.-Y. Huang, and Y.-C. Wu, "Two-Step Sintering of Fine Alumina-Zirconia Ceramics," Ceram. Int., 35 [4] 1467-72 (2009). https://doi.org/10.1016/j.ceramint.2008.08.001
- Z. Z. Fang and H. Wang, "13 - Sintering of Ultrafine and Nanosized Ceramic and Metallic Particles," pp. 431-73 in Ceramic Nanocomposites. Ed by R. Banerjee and I. Manna, Woodhead Publishing, Cambridge, 2013.
- M. H. Fathi and M. Kharaziha, "Two-Step Sintering of Dense, Nanostructural Forsterite," Mater. Lett., 63 [17] 1455-58 (2009). https://doi.org/10.1016/j.matlet.2009.03.040
- F. Funabiki, T. Kamiya, and H. Hosono, "Doping Effects in Amorphous Oxides," J. Ceram. Soc. Jpn, 120 [1407] 447-57 (2012). https://doi.org/10.2109/jcersj2.120.447
- E. N. Culea, P. Pascuta, M. Pustan, D. R. Tamas-Gavrea, L. Pop, and I. Vida-Simiti, "Effects of Eu:Ag Codoping on Structural, Magnetic and Mechanical Properties of Lead Tellurite Glass Ceramics," J. Non-Cryst. Solids, 408 18-25 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.10.002
-
S. D. Skrovanek and R. C. Bradt, "Microhardness of a Fine- Grain-Size
$Al_2O_3$ ," J. Am. Ceram. Soc., 62 [3-4] 215-16 (1979). https://doi.org/10.1111/j.1151-2916.1979.tb19059.x - R. Narayan, P. Kumta, C. Sfeir, D.-H. Lee, D. Choi, and D. Olton, "Nanostructured Ceramics in Medical Devices: Applications and Prospects," JOM, 56 [10] 38-43 (2004). https://doi.org/10.1007/s11837-004-0289-x
- R. W. Rice, "Ceramic Tensile Strength-Grain Size Relations: Grain Sizes, Slopes, and Branch Intersections," J. Mater. Sci., 32 [7] 1673-92 (1997). https://doi.org/10.1023/A:1018511613779
- C. Suryanarayana, "Structure and Properties of Nanocrystalline Materials," Bull. Mater. Sci., 17 [4] 307-46 (1994). https://doi.org/10.1007/BF02745220
- P. Palmero, "Structural Ceramic Nanocomposites: A Review of Properties and Powders' Synthesis Methods," Nanomaterials, 5 [2] 656-96 (2015). https://doi.org/10.3390/nano5020656
- K. Niihara, "New Design Concept of Structural Ceramics," J. Ceram. Soc. Jpn, 99 974-82 (1991). https://doi.org/10.2109/jcersj.99.974
- J. D. Kuntz, G.-D. Zhan, and A. K. Mukherjee, "Nanocrystalline-Matrix Ceramic Composites for Improved Fracture Toughness," MRS Bull., 29 [01] 22-7 (2004). https://doi.org/10.1557/mrs2004.12
-
C. Santos, K. Strecker, S. A. Baldacim, O. M. M. da Silva, and C. R. M. da Silva, "Influence of Additive Content on the Anisotropy in Hot-Pressed
$Si_3N_4$ Ceramics Using Grain Orientation Measurements," Ceram. Int., 30 [5] 653-59 (2004). https://doi.org/10.1016/j.ceramint.2003.07.011 -
U. Ichiro, "Effects of Additives on Piezoelectric and Related Properties of
$PbTiO_3$ Ceramics," Jpn. J. Appl. Phys., 11 [4] 450 (1972). https://doi.org/10.1143/JJAP.11.450 - R. O. Ritchie, "Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids," Int. J. Fract., 100 [1] 55-83 (1999). https://doi.org/10.1023/A:1018655917051
- Y.-M. Miao, Q.-L. Zhang, H. Yang, and H.-P. Wang, "Low-Temperature Synthesis of Nano-Crystalline Magnesium Titanate Materials by the Sol-Gel Method," Mater. Sci. Eng., 128 [1-3] 103-6 (2006). https://doi.org/10.1016/j.mseb.2005.11.019
-
B. Tang, H. Li, P. Fan, S. Yu, and S. Zhang, "The Effect of Mg:Ti Ratio on the Phase Composition and Microwave Dielectric Properties of
$MgTiO_3$ Ceramics Prepared by One Synthetic Process," J. Mater. Sci.: Mater. Electron., 25 [6] 2482-86 (2014). https://doi.org/10.1007/s10854-014-1899-x -
L. Todan, T. Dascalescu, S. Preda, C. Andronescu, C. Munteanu, D. C. Culita, A. Rusu, R. State, and M. Zaharescu, "Porous Nanosized Oxide Powders in the MgO-
$TiO_2$ Binary System Obtained by Sol-Gel Method," Ceram. Int., 40 [10] 15693- 701 (2014). https://doi.org/10.1016/j.ceramint.2014.07.092 - M. D. Lind and R. M. Housley, "Crystallization Studies of Lunar Igneous Rocks: Crystal Structure of Synthetic Armalcolite," Science, 175 [4021] 521-23 (1972). https://doi.org/10.1126/science.175.4021.521
-
J. L. X. F. Chen, T. T. Feng, Y. S. Jiang, X. H. Zhang, H. T. Wu, and Y. L. Yue, "Study on the Synthesis of Nano-Crystalline
$Mg_2SiO_4$ Powders by Aqueous Sol-Gel Process," Key Eng. Mater., 538 142-45 (2013). https://doi.org/10.4028/www.scientific.net/KEM.538.142 - R. Kamalian, A. Yazdanpanah, F. Moztarzadeh, R. Ravarian, Z. Moztarzadeh, M. Tahmasbi, and M. Mozafari, "Synthesis and Characterisation of Bioactive Glass/Forsterite Nanocomposites for Bone and Dental Implants," Ceram.- Silik., 56 [4] 331-40 (2012).
-
L. Cheng, P. Liu, X. Chen, W. Niu, G. Yao, C. Liu, X. Zhao, Q. Liu, and H. Zhang, "Fabrication of Nanopowders by High Energy Ball Milling and Low Temperature Sintering of
$Mg_2SiO_4$ Microwave Dielectrics," J. Alloys Compd., 513 373-77 (2012). https://doi.org/10.1016/j.jallcom.2011.10.051 - S. Ni and J. Chang, "In vitro Degradation, Bioactivity, and Cytocompatibility of Calcium Silicate, Dimagnesium Silicate, and Tricalcium Phosphate Bioceramics," J. Biomater. Appl., 24 [2] 139-58 (2009). https://doi.org/10.1177/0885328208094745